Disturbance rejection control for non-minimum phase systems with optimal disturbance observer

Lu Wang, Jianbo Su*

Department of Automation, Key Laboratory of System Control and Information Processing, Ministry of Education, Shanghai Jiao Tong University, Shanghai 200240, PR China

A R T I C L E I N F O

Article history:
Received 13 June 2014
Received in revised form
18 July 2014
Accepted 8 August 2014
This paper was recommended for publication by Jeff Pieper

Keywords:
Disturbance rejection control
Non-minimum phase system
Robust optimal disturbance observer
H∞ theory

A B S T R A C T

This paper investigates the disturbance rejection control for stable non-minimum phase (NMP) systems with time delay. A robust disturbance observer (DOB) based control structure is proposed. Specifically, the robust DOB is employed to compensate the uncertain plant into a nominal one, based on which a prefilter is adopted to acquire desired performance. Then, a novel DOB configuration for stable NMP systems is proposed. This strategy synthesizes the internal and robust stability, relative order and mixed sensitivity design requirements together to establish the optimization function. The optimal solution is obtained by standard H∞ theory under the condition of guarantying the presented requirements. We also investigate how the DOB can compensate the uncertain plant into a nominal one. The specific design procedure is presented for an uncertain plant with both unstable zeros and time delay.

© 2014 ISA. Published by Elsevier Ltd. All rights reserved.

1. Introduction

In most practical industrial processes, the inevitable system uncertainties and external disturbances will have great influence on the performance of control system [1]. The efficient disturbance rejection method is the compensation by the estimation of model mismatch and external disturbances [2–5]. The disturbance observer (DOB) based control method was originally proposed by Ohnishi in 1987 [6], whose effectiveness in disturbance rejections has been shown in many applications, such as humanoid joint control [7], robot manipulators control [8], aircraft control [9], optical disk control [10], motor control [11], vibration control [12,13], ball mill grinding circuits control [14,15], etc.

DOB consists of a nominal model and a low-pass filter named Q filter. The design of Q filter is the key point of DOB configuration, which attracts many researchers’ attentions. Typical filter forms, such as the binomial coefficient and Butterworth filter [16,17] are widely used. At this point, the performance mainly depends on the cut-off frequency. However, selection of parameters mainly depends on experiences, while there is no specific criterion for evaluation. The performance of system is largely limited by the fixed form of Q filter. Moreover, the robust stability can only be analyzed after the Q filter is determined. This means that we should repeat the design procedure until the robust stability requirement is guaranteed. There have been abundant results in using the H∞ theory for Q filter design [18–20]. Linear Matrix Inequality or Algebraic Riccati Equation is applied in [18,19] to optimize the Q filter with static gain. The standard H∞ theory is employed in [20] to optimize the Q filter.

However, these researches neglect the internal stability of the system, and these methods cannot be used directly in non-minimum phase (NMP) systems. Since the inverse of nominal plant is required in DOB configuration, the internal stability problem occurs if the nominal plant has the right-half of the s-plane (RHP) zeros. Meanwhile, the inverse of nominal model is non-causal according to the time delay. The configuration of DOB based control system for NMP system has been widely concerned in recent years. The authors present a DOB based model predictive control (MPC) method for a NMP process with time delay [14,15]. However, RHP zeros of the plant are not considered. In [21,22], a new filter in parallel with the Q filter is designed, and hence the parallel connection with the plant becomes of minimum phase. Then the conventional DOB configuration procedure is employed for the new system. A non-causal, minimum phase transfer function is proposed in [23] to remove the internal stability problem caused by RHP zeros. Nevertheless, the time delay is not considered in these methods. The improved DOB-MPC scheme is proposed in [24] for stable NMP systems, in which both RHP zeros and time delay are taken into account. An allpass portion is introduced in the Q filter to eliminate the influence caused by the
NMP property of the plant. However, both internal and robust stability of the system are not considered and the performance of the DOB is not analyzed specifically. In summary, although there are several researches in DOB configuration for NMP system, there is no systematic design of DOB for such system with both RHP zeros and time delay.

In this paper, we focus on the DOB based controller design for NMP systems. A novel DOB configuration strategy is proposed systematically. We first consider the robust internal stability, relative order, mixed sensitivity design requirements together to establish an optimization function. Then, the optimization problem is transformed into a standard H_∞ one, based on which the solution of Q filter is optimized by the existing standard H_∞ theory. We also investigate how the DOB can compensate the real plant into the nominal one. At last, a design example is presented specifically on an uncertain plant with both RHP zeros and time delay. In summary, the proposed strategy can be successfully employed in the DOB configuration for stable NMP systems, and the main contributions of this paper are presented as follows:

1. A systematic design strategy of DOB is proposed for stable NMP systems by taken both RHP zeros and time delay into account.
2. The optimization function is established by taken robust internal stability, relative order, mixed sensitivity design requirements into account together.
3. The solution of Q filter is optimized by introducing the allpass portion into virtually controlled objective of H_∞ problem, based on which the unstable poles of inverse of nominal plant can be eliminated for robust internal stability constraints.
4. Discussions on how the DOB can compensate the real plant into the nominal one are presented, which are verified in the simulations.

The rest of this paper is organized as follows. In Section 2, the control structure of the system is analyzed and the NMP problem is stated. In Section 3, we give the constraints of controller and DOB using internal stability principle, then the DOB is designed to acquire desired requirements. The performance of the proposed DOB is also under exploration. In Section 4, we consider a stable NMP plant with RHP zeros and time delay to implement the design procedure specifically. In Section 5, simulation on a rotary mechanical system is carried out to show the effectiveness of the DOB configuration for stable NMP systems, and the NMP property of the plant is not analyzed specifically. In summary, although there are several researches in DOB configuration for NMP system, there is no systematic design of DOB for such system with both RHP zeros and time delay.

The traditional control system based on DOB is expressed in Fig. 1, where $P(s)$ is the plant model, $P_n(s)$ is the nominal model, $C(s)$ and $Q(s)$ are the controller and Q filter to be designed. $R(s), Y(s), D(s)$ and $N(s)$ denote the Laplace transformation of reference input r, output y, external disturbances d and measurement noise n, respectively. τ is the dead-time of the plant while τ_m is its nominal value. DOB considers the mismatch between real plant and nominal one as equivalent disturbance acting on its nominal model. It can estimate the equivalent disturbances combined with the external disturbances, and feed back the estimated disturbances for cancellation. Then the controller is applied as a prefilter to stabilize the nominal system compensated by DOB for desired performance. This control system has two degrees-of-freedom (2DOF). Hence, the DOB can be optimized for disturbance rejection performance and then the prefilter can be chosen independently for setpoint tracking performance. In this control system, the design and optimization of controller and DOB can be implemented separately.

The control objective is to design the DOB to attenuate the compound disturbance caused by model mismatch and external disturbances. Then, a prefilter is designed to stabilize the nominal model to acquire desired performance. Since DOB can estimate the compound disturbances, the controller $C(s)$ can be designed based on the nominal plant $P_n(s)$. Here, H_2 theory is applied to design the controller $C(s)$ and the prefilter can be obtain as:

$$C(s) = 1 + C(s)P_n(s)$$

(1)

For the NMP systems, the inverse of the RHP zeros and time delay is physically unrealizable for its non-causal property. The internal stability is a basic requirement for a practical closed-loop system, but unfortunately, in the research work of DOB design, the internal stability analysis for this kind of system has been only discussed in [25]. Moreover, most DOB design methods only validate the robust stability after the parameters of the DOB are determined. It is a complicated work for us to adjust the parameters repeatedly to guarantee the robust stability. Thus, in this paper, we mainly focus on the systematic design strategy of DOB for stable NMP systems. The system model $P(s)$ is described with multiplicative uncertainty as:

$$P(s) = P_n(s)(1 + \Delta(s))$$

(2)

where $P_n(s)$ and $P_d(s)$ are all stable plants with NMP property. The nominal model $P_n(s)$ is expressed as:

$$P_n(s) = \frac{N(s)}{D(s)} \prod \left(-s + \xi_i\right)$$

(3)

where $Re(\xi_i) > 0, N(s)$ and $D(s)$ have no root with positive real part.

3. Robust DOB design

The transfer function of the DOB structure can be written as:

$$Y(s) = M(s)^{-1}P_n(s)P(s)e^{-\tau r}\left(1 - Q(s)e^{-\tau q}\right)D(s) + P(s)e^{-\tau u}U(s)$$

$$- P_n^{-1}(s)P(s)Q(s)e^{-\tau q}N(s)$$

(4)

where $M(s) = 1 + P_n^{-1}(s)P(s)Q(s)e^{-\tau q} - Q(s)e^{-\tau q}$.

From Eq. (4), we notice that the suppression performance against external disturbances d mainly depends on the factor $\left(1 - Q(s)e^{-\tau q}\right)$. However, it is very hard for us to optimize $Q(s)$ directly with time delay. By introduce the notation $Q(s) \triangleq Q(s)e^{-\tau q}$, we can consider $Q(s)$ directly. Then, $Q(s)$ can be obtained by replace the time delay $e^{-t \tau_q}$ with a Padé approximation. Eq. (4) can be rewritten as:

$$Y(s) = M(s)^{-1}P_n(s)P(s)e^{-\tau r}\left(1 - Q(s)\right)D(s) + P(s)e^{-\tau u}U(s)$$

$$- P_n^{-1}(s)P(s)Q(s)N(s)$$

(5)

Assume that nominal model of the plant matches the real plant very well (i.e., $P(s) = P_n(s), r = \tau_m$), then Eq. (5) can be simplified as:

$$Y(s) = P_n(s)e^{-\tau r}\left(1 - Q(s)\right)D(s) + P_n(s)e^{-\tau u}U(s) - Q(s)N(s)$$

(6)

From Eq. (6), we can see that $Q(s)$ should be reduced as far as possible to attenuate the influence caused by measurement, whereas $1 - Q(s)$ should also be small to reject the external disturbances. These two conditions are conflicting. In practical
applications, disturbances normally happen at low frequencies, whereas measurement noise and system uncertainties take effects at high frequencies. This suggests that $Q(s)$ should be designed as a low-pass filter, which can be designed by frequency weighted minimization.

3.1. Robust internal stability

A control system is internally stable if bounded signals injected at any point of the control system generate bounded responses at any other point [26]. The internal stability is a basic requirement for a practical closed-loop system. Here, we give the sufficient condition of the internal stability of the DOB based control structure.

Theorem 1. The control system described in Fig. 1 is internally stable if the following requirements are satisfied:

1. Requirement 1. $\frac{C(s)}{1+P_n(s)K(s)}$ has no RHP poles;
2. Requirement 2. $Q(s) \in \mathcal{RH}_\infty$ and it can eliminate all the RHP poles of $P_n^{-1}(s)$.
3. Requirement 3. The open loop transfer function from U_r to U is stable.
4. Requirement 4. The robust stability of the closed-loop system against the system uncertainties should be satisfied.

Proof. We can easily find that the transfer function from $R(s)$ to $U_r(s)$ is $\frac{C(s)}{1+P_n(s)K(s)}$, hence Requirement 1 must be satisfied.

Then we analyze the internal stability of the DOB structure. With the configuration of Fig. 1, the six transfer functions from $[U_r, D N]^T$ to $[Y U]^T$ are given as:

$$M(s) = \begin{pmatrix} P(s)e^{-\tau} & P(s)e^{-\tau}(1-Q(s)e^{-\tau s}) - P_n^{-1}(s)P_n(s)Q(s)e^{-\tau s} \\ 1 & (1-Q(s)e^{-\tau s}) - P_n^{-1}(s)Q(s) e^{-\tau s} \end{pmatrix}.$$

(7)

If all the components of the matrix in Eq. (7) and $\frac{1}{M(s)}$ are all in \mathcal{RH}_∞, then the transfer function from $[U_r, D N]^T$ to $[Y U]^T$ is stable, based on which we can guarantee the internal stability.

Since $P(s)$ and $P_n(s)$ are with no RHP poles, if Requirement 2 is satisfied, then we can find that all components of matrix in Eq. (7) are in \mathcal{RH}_∞.

Noticing that $\frac{1}{M(s)}$ is the transfer function from U_r to U, if open loop transfer function from U_r to U is stable and the closed-loop system is robustly stable, then the close-loop system is input output stable with input U_r and output U. Hence, $\frac{1}{M(s)} \in \mathcal{RH}_\infty$ if Requirement 3 and 4 are satisfied. Finally, we can come to a conclusion that the control system described in Fig. 1 is internally stable if Requirements 1 to 4 are satisfied.

Theorem 2. If the following inequality is satisfied, the condition of robust stability described in Requirement 4 of Theorem 1 is satisfied:

$$|Q'(j\omega)W_{\Delta}(j\omega)| < 1, \quad \forall \omega,$$

(8)

where $W_{\Delta}(j\omega) > F(\omega), \forall \omega$, and the definition of $F(\omega)$ is given as:

$$F(\omega) = |\Delta(j\omega)e^{-(\tau - \tau_s)j\omega}| + |1 - e^{-(\tau - \tau_s)j\omega}|, \quad \forall \omega.$$

(9)

Proof. The equivalent structure is given in Fig. 2. According to the Small Gain Theory, we get the requirement of robust stability as:

$$\left\|\frac{Q(s)e^{-\tau s}}{Q(s)e^{-\tau s} - Q(s)e^{-\tau s} - \Delta(s)}\right\|_\infty < 1.$$

(10)

The triangle inequality is applied to acquire a more simple expression. According to Eq. (10), we get:

$$|Q'(j\omega)\Delta(j\omega)e^{-(\tau - \tau_s)j\omega}| < |Q'(j\omega)(1 - e^{-(\tau - \tau_s)j\omega}) - 1|, \quad \forall \omega.$$

(11)

From the triangle inequality, we get:

$$|Q'(j\omega)(1 - e^{-(\tau - \tau_s)j\omega}) - 1| \geq 1 - |Q'(j\omega)(1 - e^{-(\tau - \tau_s)j\omega})|, \quad \forall \omega.$$

(12)

Then, if the following Eq. is satisfied, then Eq. (11) is satisfied:

$$|Q'(j\omega)\Delta(j\omega)e^{-(\tau - \tau_s)j\omega}| + |Q'(j\omega)(1 - e^{-(\tau - \tau_s)j\omega})| < 1, \quad \forall \omega.$$

(13)

With the definition of $F(\omega)$, we can easily obtain that the closed-loop system is robustly stable against the system uncertainties if Eq. (8) holds.

Remark 1. The above two Theorems provide us with the robust internal stability constraints for DOB configuration. These above constraints will be applied to establish the cost function.

3.2. Establishment of the cost function

The sensitivity and complementary sensitivity function of the DOB structure are the transfer functions from equivalent disturbance at output terminal and input u_r to output y, respectively. From Fig. 1, we can derive:

$$S_{DOB} = \frac{1 - Q(s)}{M(s)}, \quad T_{DOB} = \frac{P_n^{-1}(s)P_n(s)Q(s)}{M(s)}.$$

(14)

With the assumption that nominal model of the plant matches the real plant very well, This results in $T_{DOB}(s) = Q(s)$ and $S_{DOB}(s) = 1 - Q(s)$. Then, it is shown that in order to achieve disturbance rejection, robustness against system uncertainties and noise attenuation performance, it is desirable to reduce $Q(s)$ and $1 - Q(s)$ as much as possible. Since external disturbances is normally at low frequency while measurement noise is at high frequencies, $1 - Q(s)$ should be minimal in low frequencies (control band), whereas $Q(s)$ should be minimal in high frequencies (system uncertainties and noise band).

From the descriptions above, we know that the design requirements of Q filter can be summarized as follows:

1. The relative order restrictions of $Q(s)$ should higher than or at least equal to that of $P_n(s)$ to make sure that $Q(s)P_n^{-1}(s)$ is a proper transfer function.
2. The designed Q filter should eliminate the compound disturbance as well as the influence caused by measurement noise.
3. The robust stability of the closed-loop system should be satisfied.

We define a set of $Q(s)$ as:

$$Q_k = \left\{ F(s) | \frac{A(s)}{B(s)} = \sum_{q=0}^{p} a_q s^q \right\}, a_q \neq 0, b_p \neq 0, p - q \geq k.$$

(15)

where k is the relative order of $P_n(s)$, $A(s)$ and $B(s)$ are coprime polynomials.

The solution of the Q filter should eliminate the disturbances as far as possible under the condition of guarantying the requirements of internal and robust stability, relative order and
measurement noise suppression performance. Then, we establish the optimization function from the above requirements.

From Eq. (5), the disturbance and measurement noise attenuation problem can be regarded as the selection of the tradeoff between sensitivity and complementary sensitivity functions:

\[
\begin{aligned}
\min_{P(s), Q(s)} & \left[\begin{array}{c}
\min_{Q(s)} |W_1(j\omega)(1 - Q(s))| \\
\min_{Q(s)} |W_N(j\omega)Q(j\omega)|
\end{array} \right] \\
\text{s.t.} & \|W_1(s)Q(s)\|_\infty < 1,
\end{aligned}
\]

where \(W_1\) and \(W_N\) are the weighting functions which reflect the prior frequency property of the external disturbances and measurement noise, respectively. Here, we can transform the above functions into the following norm:

\[
\begin{aligned}
\max_{\gamma} & \min_{Q(s)} \left\| \gamma W_1(s)(1 - Q(s)) \right\|_\infty < 1 \\
\|W_1(s)Q(s)\|_\infty < 1.
\end{aligned}
\]

With the consideration of the robust internal stability of closed-loop system, we combine the requirements in Eqs. (8) and (17) together to acquire the new optimization function as:

\[
\begin{aligned}
\max_{\gamma} & \min_{Q(s)} \left\| \gamma W_1(s)(1 - Q(s)) \right\|_\infty < 1, \\
\text{s.t.} & \|P(s)\|_\infty < 1, \\
\|Q(s)\|_\infty < 1, \\
\|W_1(s)Q(s)\|_\infty < 1.
\end{aligned}
\]

Theorem 3. The optimal loop function \(L(s)\) and the Q filter design problem becomes a standard \(H_\infty\) problem as:

\[
\begin{aligned}
\max_{\gamma} & \min_{P(s), Q(s)} \left\| \gamma W_1(s)(1 + \frac{\gamma}{P(s)}K) \right\|_\infty < 1, \\
\text{s.t.} & \|P(s)\|_\infty < 1, \\
\|Q(s)\|_\infty < 1, \\
\|W_1(s)Q(s)\|_\infty < 1,
\end{aligned}
\]

where \(L(s) = P(s)\kappa(s)\) and \(P(s)\kappa(s)\) are the virtually controlled objective and controller, respectively. The virtually controlled objective \(P(s)\kappa(s)\) is given as:

\[
P(s)\kappa(s) = \frac{P(s)\kappa(s)}{P(s)\kappa(s)},
\]

where \(P\) is a stable plant and \(W_1(s)\) is an allpass portion which includes the RHP zeros of \(P\):}

\[
P(s)\kappa(s) = \prod_{i=1}^{\text{k}} \frac{s + \zeta_i}{s},
\]

where the superscript \(H\) denotes complex conjugate.

Proof. Let \(\zeta_i\) be a set of virtually controlled objectives. For a virtually controlled objective \(P(s)\kappa(s)\), assume that \(K(s)\) is the optimal solution of (20). Then \(P(s)\kappa(s)\) has \(k\) stable poles \(\tau_i\) for \(i = 1, \ldots, k\). From loop shaping theory, it is clear that the optimal solution \(\kappa(s)\) of the problem (20) includes \(k\) zeros equal to these poles as

\[
\kappa(s) = \frac{\prod_{i=1}^{k} (s + \tau_i)}{s + \zeta_i},
\]

Since \(L(s) = P(s)\kappa(s)\) is optimal open-loop function. For another virtual plant, we can get the similar conclusion and \(K(s)\) is also an optimal open-loop function for \(P(s)\). This means that selection of \(P(s)\) does not have any influence on minimizing the norm of the problem (17), resulting in \(L(s) = K(s)\).

For a given virtually controlled objective \(P(s)\), if we can acquire the optimal solution of the virtual controller \(K(s)\), then we can get the Q filter as:

\[
\begin{aligned}
Q(s) &= \frac{P(s)\kappa(s)}{1 + P(s)\kappa(s)},
\end{aligned}
\]

where \(\gamma W_1(s)|W_N(j\omega)|\varnothing \omega \gamma W_1(0)\leq j\omega\varnothing \omega W_1(j\omega)|W_N(j\omega)|\varnothing \omega\). Then we can obtain the following Eq. as:

\[
\begin{aligned}
\lim_{\gamma \to 0} \|W_1(j\omega)Q(j\omega)\|_\infty < 1,
\end{aligned}
\]

hence, the relative order of \(Q(s)\) is higher than or equal to that of \(W_1(s)\).

2. From the description of \(H_\infty\) theory, we know that the closed-loop system of the virtual \(H_\infty\) problem is internally stable, then \(Q(s) = \frac{P(s)\kappa(s)}{1 + P(s)\kappa(s)}\) is a stable plant and \(\gamma \in 0, 1\) with \(\gamma \in 0, 1\) and \(\|Q(s)\|_\infty < \frac{1}{\|W_1(s)\|_\infty}\). Then we can obtain the following Eq. as:

\[
\begin{aligned}
\lim_{\gamma \to 0} \|W_1(j\omega)Q(j\omega)\|_\infty < 1,
\end{aligned}
\]

hence, the relative order of \(Q(s)\) is higher than or equal to that of \(W_1(s)\).

2. From the description of \(H_\infty\) theory, we know that the closed-loop system of the virtual \(H_\infty\) problem is internally stable, then \(Q(s) = \frac{P(s)\kappa(s)}{1 + P(s)\kappa(s)}\) is a stable plant and \(\gamma \in 0, 1\) with \(\gamma \in 0, 1\) and \(\|Q(s)\|_\infty < \frac{1}{\|W_1(s)\|_\infty}\). Then we can obtain the following Eq. as:

\[
\begin{aligned}
\lim_{\gamma \to 0} \|W_1(j\omega)Q(j\omega)\|_\infty < 1,
\end{aligned}
\]

hence, the relative order of \(Q(s)\) is higher than or equal to that of \(W_1(s)\).

2. From the description of \(H_\infty\) theory, we know that the closed-loop system of the virtual \(H_\infty\) problem is internally stable, then \(Q(s) = \frac{P(s)\kappa(s)}{1 + P(s)\kappa(s)}\) is a stable plant and \(\gamma \in 0, 1\) with \(\gamma \in 0, 1\) and \(\|Q(s)\|_\infty < \frac{1}{\|W_1(s)\|_\infty}\). Then we can obtain the following Eq. as:

\[
\begin{aligned}
\lim_{\gamma \to 0} \|W_1(j\omega)Q(j\omega)\|_\infty < 1,
\end{aligned}
\]

hence, the relative order of \(Q(s)\) is higher than or equal to that of \(W_1(s)\).

2. From the description of \(H_\infty\) theory, we know that the closed-loop system of the virtual \(H_\infty\) problem is internally stable, then \(Q(s) = \frac{P(s)\kappa(s)}{1 + P(s)\kappa(s)}\) is a stable plant and \(\gamma \in 0, 1\) with \(\gamma \in 0, 1\) and \(\|Q(s)\|_\infty < \frac{1}{\|W_1(s)\|_\infty}\). Then we can obtain the following Eq. as:

\[
\begin{aligned}
\lim_{\gamma \to 0} \|W_1(j\omega)Q(j\omega)\|_\infty < 1,
\end{aligned}
\]

hence, the relative order of \(Q(s)\) is higher than or equal to that of \(W_1(s)\).

2. From the description of \(H_\infty\) theory, we know that the closed-loop system of the virtual \(H_\infty\) problem is internally stable, then \(Q(s) = \frac{P(s)\kappa(s)}{1 + P(s)\kappa(s)}\) is a stable plant and \(\gamma \in 0, 1\) with \(\gamma \in 0, 1\) and \(\|Q(s)\|_\infty < \frac{1}{\|W_1(s)\|_\infty}\). Then we can obtain the following Eq. as:

\[
\begin{aligned}
\lim_{\gamma \to 0} \|W_1(j\omega)Q(j\omega)\|_\infty < 1,
\end{aligned}
\]
controller are all stable plant, hence, the transfer function \(G_{(u)}\) is stable.

The above Theorem 3 shows that if the weighting functions and virtual control objective are well-selected, the optimized Q filter satisfies the relative order constraint, and can eliminate the unstable poles of \(P_n^{-1}(s)\).

3.4. Further discussions of DOB

The DOB based control structure is proposed to suppress the input external disturbances. However, DOB can also deal with the internal uncertainties and external disturbances. Then, we analyze the performance of the proposed DOB under different conditions.

3.4.1. The final-value of \(u_t\) and \(d\) exists

The Final-value Theorem can be applied to investigate the output error as:

\[
\epsilon(\infty) = \lim_{t \to \infty} e(t) = \lim_{t \to \infty} E(s) = \lim_{t \to \infty} \left[P_n(s)P_n^{-1}(s) - \frac{P_n(s)e^{-\tau s}}{1 - P_n(s)e^{-\tau s}} \right] U_t(s) - \lim_{t \to \infty} \int_{t=0}^{\infty} \left[P_n(s)e^{-\tau s} - \frac{P_n(s)e^{-\tau s}}{1 - P_n(s)e^{-\tau s}} \right] D(s)
\]

where \(U_t(s)\) and \(D(s)\) denote the Laplace transformation of \(u_t(t)\) and \(d(t)\) such that:

\[
\begin{align*}
\lim_{s \to 0} sU_t(s) & = u_t(\infty) = \text{constant} \\
\lim_{s \to 0} sD(s) & = d(\infty) = \text{constant}
\end{align*}
\]

If the DC gain of \(P(s)\) and \(P_0(s)\) are both constant, then, we can come to a conclusion that \(\epsilon(\infty) = 0\) if DC gain of \(Q(s)\) is 1. If \(P(s)\) or \(P_0(s)\) has zeros on imaginary axis, \(1 - \frac{P_n(s)e^{-\tau s}}{1 - P_n(s)e^{-\tau s}}\) should possess corresponding zeros to hold \(\epsilon(\infty) = 0\). This can be achieved easily by setting the corresponding poles in weighting function \(W_1(s)\).

3.4.2. External disturbance \(d\) is sine signal

At present, the final-value of \(\epsilon(\infty)\) no longer exists since the transfer function has two poles on imaginary axis. Hence, we hope \(1 - \frac{P_n(s)e^{-\tau s}}{1 - P_n(s)e^{-\tau s}}\) can eliminate the poles on imaginary axis. This can be achieved if we acquire the corresponding poles into weighting function \(W_1(s)\). Then, the proposed DOB can suppress the output error caused by periodic \(u_t\) or \(d\). However, the existence of time delay may have a terrible effect on zeros of \(1 - \frac{P_n(s)e^{-\tau s}}{1 - P_n(s)e^{-\tau s}}\). The closer the zeros of \(1 - \frac{P_n(s)e^{-\tau s}}{1 - P_n(s)e^{-\tau s}}\) to poles on imaginary axis, the better disturbance rejection performance against periodic signals will be achieved.

4. Design example

In this section, we present the DOB and controller design procedure specifically. The simulation results are shown to prove the effectiveness of the proposed method.

The NMP process usually exists in many industrial and chemical applications. The dead-time property and unknown disturbances are very hard to deal with. Here, we choose the following NMP process with RHP zeros, dead-time and disturbance to validate the proposed method in this paper. The transfer function of the plant is expressed as:

\[
P(s) = \frac{-s + 1}{(3s + 1)(2s + 1)} , \quad \omega_n = 20 \text{ rad}, \quad \xi = 0.25.
\]

The nominal model is given as:

\[
P_0(s) = \frac{-s + 1}{(3s + 1)(2s + 1)}
\]

The dead-time and its nominal values are given as: \(\tau = 1.1s, \tau_r = 1s\). The upper bound of time delay is defined as 0.1s, which is used to select the weighting function \(W_1(s)\). The disturbance acting on the plant is sine signal with the amplitude 1 and frequency 1 rad/s. And then, we give the following procedures of DOB configuration.

Step 1. Select the weighting functions \(W_1(s)\) and \(W_2(s)\) that reflect the design specifications such as disturbance rejection performance, robust stability and mixed sensitivity design requirements.

We hope the selection of weighting function \(W_1(s)\) can suppress the periodic component of external disturbances. Meanwhile, from the description of general disturbance in Eq.(30), \(Q(s)\) should possess a pole at the origin to eliminate system uncertainties. From the specified form of external disturbances, we select the weighting function as:

\[
W_1(s) = \frac{0.5}{s^2 + 1} , \quad W_2(s) = \frac{s^2 + 0.5s + 1}{s^3 + s}.
\]

If there is no prior knowledge of the disturbances, we can simply choose \(W_1(s) = \frac{1}{s}\) to attenuate load disturbances.

From the definition of \(W_2(s)\), we know that it must be higher than \(W_1(s)\) and \(W_3(s)\) at all frequency range to guarantee robust stability and measurement noise suppression performance. In this simulation, the weighting function \(W_2(s)\) should have suppression of \(-50\) dB against measurement noise at frequency of 1000 rad/s with the premise of robust stability. The weighting function is chosen as:

\[
W_2(s) = \frac{s + 1.5}{2s}
\]

and from Fig. 4, we notice that the selected \(W_2(s)\) satisfies the above requirements.
The following two structure based on DOB has been successfully constructed.

Here, we notice that

From Step 3, we obtain

where $\tau_1 = 0.25$, $\tau_2 = 0.85$ is selected to guarantee the robust stability.

The comparison of frequency magnitude of the above Q filters are expressed in Figs. 5 and 6. From the frequency responses in Fig. 5, it is verified that designed Q filters $Q(s)$ and $Q(s)$ under weighting function $W_2(s)$ satisfies the robust stability condition. Meanwhile, the time constants in $Q_{b1}(s)$ and $Q_{b2}(s)$ are well-selected for robust stability condition. Since time delay is an allpass design, designed $Q(s)$ without consideration of time delay will not affect the robust stability of the system. Then we analyze the disturbance suppression performance. Nevertheless, if we do not consider the time delay during Q filter design procedure, the time delay will bring frequency response of $1 - Q(s)e^{-\tau s}$ with a translation. This is revealed in Fig. 6. From the enlarged frequency response of $1 - Q(s)e^{-\tau s}$, only the Q filter which considers the time delay will lead the frequency response of $1 - Q(s)e^{-\tau s}$ a sharp drop at frequency of 1 rad/s, with its magnitude almost -50 dB at this frequency. According to Eq. (4), we know that this Q filter can suppress the constant disturbances as well as periodic disturbances with frequency of 1 rad/s. Nevertheless, the magnitude of other three filters is larger at frequency of 1 rad/s in Fig. 6, which means $1 - Q(s)e^{-\tau s}$ cannot eliminate the poles of $D(s)$ on imaginary axis. This indicates that the disturbance rejection performance of $Q(s)$ is the best of these Q filters. Especially, we notice that the frequency response of $Q(s)$, $Q_{b1}(s)$ and $Q_{b2}(s)$ at $\omega = 1$ rad are all larger than 0 dB, which means these three filters will even enlarge the influence caused by external disturbances.

In the simulations, external disturbances with constant and periodic value are taken into account, respectively. Fig. 7(a) shows the step response of the system with constantly external disturbances, whereas the performance with periodic disturbance is presented in Fig. 7(b). Since the DC gain of the mentioned Q filters is 1, these Q filters can eliminate the external disturbances with constant value easily. We also find that DOB with $Q(s)$ has better performance of periodic disturbance attenuation. Since the frequency response of $Q(s)$, $Q_{b1}(s)$ and $Q_{b2}(s)$ at $\omega = 1$ rad are all larger than 0 dB in other words, these three filters will enlarge the output error caused by periodic external disturbances. Hence, to deal with the periodic external disturbances, a well-designed Q filter is especially important for NMP systems. The estimation

Step 2. Select a virtually controlled objective $\hat{P}(s) \in \Sigma_p$ that reflects the relative order with the RHP parts of $P_n(s)$.

From Eq. (21), we choose the virtually controlled objective as:

From Step 3, we obtain Q filter by Eqs. (24) and (25).

The controller is designed based on H_2 theory as:

Then we get the prefilter as:

which satisfies Requirement 1 of Theorem 1. The whole control structure based on DOB has been successfully constructed.

If we do not consider the time delay in Q filter design procedure, the following Q filter $Q(s)$ will be obtained:

We also use the method proposed in [24] to design the Q filter. The following two Q filters with same relative order as $Q(s)$ are given as:

\[
\begin{align*}
Q_{b1}(s) &= \frac{1}{(s^3 + 2s^2 + 3s + 1)(s^2 + 1)} \\
Q_{b2}(s) &= \frac{1}{(s^3 + 2s^2 + 3s + 1)(s + 1)}
\end{align*}
\]

Fig. 4. Selection of weighting function $W_2(s)$.

Fig. 5. Robust stability against system uncertainties.

Please cite this article as: Wang L, Su J. Disturbance rejection control for non-minimum phase systems with optimal disturbance observer. ISA Transactions (2015), http://dx.doi.org/10.1016/j.isatra.2014.08.003
effect with periodic disturbance is shown in Fig. 8, it is clearly that
the proposed DOB can estimate the general disturbance D_g
accurately within 10 second. The control output in shown in
Fig. 9, with the estimation of DOB, the proposed controller can
adjust the control output according to the disturbances to increase
the control accuracy. Fig. 7(b) also shows that the control accuracy
of the overall system increase with the convergence of DOB.

5. Application of mechanical system

In this section, a rotary mechanical system is introduced to verify
the effectiveness of the proposed control scheme. The rotary
mechanical system consists of inertias, dampers, torsional springs, a
timing belt, pulleys, and gears. The transfer function of the plant is
shown as follows [27]

$$\begin{align*}
P(s) &= \frac{123.853 \times 10^4}{s^2 + 6.5s + 42.25}(s + 45)(s + 19) \\
&= \frac{1}{s^2 + 6.5s + 42.25}
\end{align*}$$

Notice that the poles $s = -45$ and $s = -190$ are far away from
the dominant conjugate poles, and consider the uncertainties of
the model. The nominal plant is selected as

$$P_n(s) = \frac{144.86(s + 3)}{(s^2 + 6.5s + 42.25)}$$

Please cite this article as: Wang L, Su J. Disturbance rejection control for non-minimum phase systems with optimal
disturbance observer. ISA Transactions (2015), http://dx.doi.org/10.1016/j.isatra.2014.08.003
To suppress the constantly external disturbances under the condition of guarantying the robust stability, the weighting functions are given as

\[
\begin{align*}
W_1(s) &= \frac{1}{s}, \\
W_2(s) &= \frac{0.2s + 3}{9}.
\end{align*}
\]

(46)

Since the relative order of \(P_0(s) \) is 1, the relative order of \(W_2(s) \) is chosen as 1 to make the relative order of \(Q(s) \) same as that of \(P_0(s) \). Then, follow the design specifications in Section 4, by introduce the virtually control objective

\[
\tilde{P}(s) = \frac{1}{s + 2} - \frac{s + 3}{s + 3}.
\]

(47)

the virtual controller is optimized as

\[
\tilde{K}(s) = \frac{45(s + 3)(s + 2)}{s(s + 64.57)},
\]

(48)

and the \(Q \) filter is expressed as

\[
Q(s) = \frac{45(s + 3)}{s^2 + 19.57s + 135}.
\]

(49)

Then, the controller is designed based on \(H_2 \) theory as

\[
C(s) = \frac{s^2 + 6.5s + 42.25}{144.86(0.25s^2 + 2.65)}.
\]

(50)

Finally, we get the prefilter as

\[
\frac{C(s)}{1 + C(s)P_0(s)} = \frac{s^2 + 6.5s + 42.25}{144.86(0.25s^2 + 1.65 + 3)}.
\]

(51)

Fig. 10 shows the robust stability condition of the closed-loop system with DOB. It is verified from Fig. 10 that the weighting function that reflects the robust stability condition \(W_2(s) \) is well selected. It is also shown that the optimized \(Q \) filter satisfies the robust stability condition very well. The output in Fig. 11 shows the control performance of control system in the presence of constantly disturbance. Without DOB, there exists steady-state error caused by external disturbances and system uncertainties. The designed DOB can eliminate the steady-state error successfully.

We can easily calculate the DC gains of the real and nominal plants with \(s = j0 \) as: \(P_0(j0) = 12.0, P_0(j0) = 10.3 \). It is clear that the DC gain of the nominal model does not match that of the real system. However, due to the simulation result shown in Fig. 10, the proposed method can enable the output to converge to the reference signal successfully without steady-state error. This design example shows that the mismatch of the DC gains of the real and nominal plant will not bring the control system with uncorrected error between the output and the reference signal.

6. Conclusions

In this paper, we mainly focus on the DOB based controller designed for stable NMP systems with both RHP zeros and time delay. A systematic DOB design strategy is proposed. We synthesize the internal and robust stability constraints, relative order and mixed sensitivity design requirements together to establish an optimization function. The standard \(H_\infty \) theory is applied to obtain the optimal solution. At last, we consider a NMP process and present the design procedure specifically to show that all the constraints can be guaranteed based on the design procedures. Simulations are carried out to show that the proposed method can be successfully employed for stable NMP systems. It is verified that the proposed method can be used effectively under different conditions of external disturbances.
Acknowledgement

This work was financially supported by the National Natural Science Foundation of China under grant no. 61221003.

References