ME 465

Due: Friday, 9/14/01

- 1. A two link, planar robot is shown, along with the forward kinematics equations. If you are given the desired end-effector coordinates (x_0, y_0, z_0) and the offsets for the end-effector (x_2, y_2, z_2) , what are the inverse kinematics equations for the joint variables θ_1 and d_2 ?
 - $$\begin{split} x_0 &= c_1 \; x_2 \text{ } s_1 \; y_2 \text{ } s_1 \; d_2 + c_1 \; a_1 \\ y_0 &= s_1 \; x_2 + c_1 \; y_2 + c_1 \; d_2 + s_1 \; a_1 \\ z_0 &= z_2 \end{split}$$

2. Find the forward kinematic solution for the parameters below, then substitute into your answers for #1 as a check:

Joint	$oldsymbol{q}_{ ext{I}}$	di	a _i	$\boldsymbol{a}_{\mathrm{i}}$
1	45°	0	2	270°
2	0	4	0	90°

3. Find the forward kinematic solution for the parameters below, then substitute into your answers for #1 as a check:

Joint	$oldsymbol{q}_{ ext{I}}$	di	a _i	$\boldsymbol{a}_{\mathrm{i}}$
1	330°	0	2	270°
2	0	6	0	90°