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Some Definitions

Linear Velocity:
Definition: The instantaneous rate-of-change in linear position of a
point relative to some frame.

The position of a point Q in {A} is represented by the linear position
vector, :

(1-1)

The velocity of a point Q relative to {A} is represented by the linear
velocity vector, :

(1-2)

Angular Velocity:
Definition: The instantaneous rate-of-change in the orientation of one
frame relative to another.

Just as there are many of ways to represent orientation (Euler Angles,
Fixed Angles, Rotation Matrix, etc.), there are also many ways to rep-
resent the rate-of-change in orientation. We will focus on two: the
Angular Velocity Vector and the Angular Velocity Matrix.

Angular Velocity Vector:
Definition: A vector whose direction is the instantaneous axis of rota-
tion of one frame relative to another and whose magnitude is the rate of
rotation about that axis.

The angular velocity vector,

(1-3)

represents the instantaneous rate of rotation of {B} relative to {A}.

Angular Velocity Matrix:
The rotation matrix,  defines the orientation of {B} relative to {A}.
Specifically, the columns of  are the unit vectors of {B} represented
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in {A}:

(1-4)

If we look at the derivative of this rotation matrix, , the col-
umns will be velocity of each unit vector of {B} with respect to {A}:

(1-5)

Like the rotation matrix, this matrix has a number of “interesting” prop-
erties: Each column vector is perpendicular to the corresponding col-
umn vector in the rotation matrix and all three columns vectors are each
perpendicular to a single vector which represents the instantaneous axis
of rotation. This latter property implies some sort of relationship with
the angular velocity vector since the instantaneous axis of rotation is a
normalized angular velocity vector.

The relationship between  and  can be seen if we factor  into:

(1-6)

The skew-symmetric matrix,

(1-7)

is called the angular velocity matrix and the elements of this matrix are
the same as the elements of .

Free Vectors:
Linear velocity vectors are insensitive to shifts in origin. In the example
below, the velocity of the car frame {C} relative to both {A} and{B} is
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the same. That is, .

As long as {A} and {B} are fixed relative to each other and have the
same orientation, the velocity is unchanged. For this reason, linear
velocity vectors are called free vectors.

Velocity Frames
When talking about the velocity (linear or angular) of an object, there
are really two important frames that are being used:

1. Theframe of reference: this is the frame used to measure the
object’s velocity

2. Theframe of representation.: this is the frame in which the velocity
is expressed.

For example, the linear velocity vector,  is the linear velocity of
some point Q when using {B} as the frame of reference. If we trans-
form this vector (e.g.,  then the resulting vector isstill the veloc-
ity of Q relative to {B}, butrepresented in a different frame {A}.

Our standard frame notation is augmented as follows to support this
important distinction:

(1-8)

Note that in the general case,  because  may be
time-varying.
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Using the figure below, and given that the car’s (accurate) speedometer
reads 100kph, fill in the elements of the table:

Road
Section

Velocity

A

B

C

D

E

F

A

B
C

D
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C 
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C 
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T

100 0 0
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Mathematics Toolbox

Angular Velocity: Vector vs. Matrix
The angular velocity vector and angular velocity matrix allow us to
specify angular velocity in different ways. The vector form is conve-
nient because it has an easy-to-grasp physical meaning; however, the
matrix form is often more convent when doing algebraic manipula-
tions. So we need to be able to shift easily from one form to the other as
needed.

The following table shows a helpful list of corresponding matrix and
vector forms:

Changing the Frame of Representation: Linear Velocity:
We have already used the homogeneous transform matrix, , to com-
pute the location of position vectors in other frames:

(1-9)

We use the derivative of this relation to study the relationship of veloc-
ity from one frame to another:

(1-10)

or (5-11)

where (5-12)

Table 1: Matrix and Vector forms of angular velocity
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and . (5-13)

Using (5-12) and (5-13), (5-11) can be expanded to

. (1-14)

This expression can be broken down into the sum of three components:

(1-15)

We can convert the angular velocities in this expression to vector form
using Table 1 on page 5 so that

. (1-16)

Note that in the special case where  (i.e.,  and )
then (1-16) simplifies to  which shows that

 holds only in this special condition.

Changing the Frame of Reference: Angular Velocity
We use rotation matrices to represent angular position so that we can
compute the angular position of {C} in {A} if we know the angular
position of {C} in {B} and {B} in {A} by

. (1-17)

To study how angular velocity propagates between frames, we will
look at the derivative of (1-17):

(1-18)

Substituting in (1-6) yields

. (1-19)

Post-multiplying by  and simplifying yields

. (1-20)

Using Table 1 on page 5, the angular velocities can also be expressed in
vector form as:

(1-21)
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Ṗ
B

Q
d
dt
----- P

A
Borg

1

V
A

Borg

0

= =

V
A

Q

0

Ṙ
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expressed in the same frame.

Velocity propagation between robot links

The homogeneous transform matrix, , provides a complete
description of the linear and angular position relationship between
adjacent robot links. These descriptions may be combined together to
describe the position of a link relative to the robot base frame {0}:

(1-22)

We would like to have a similar description of the linear and angular
velocities between adjacent robot links and also between a given link
and the robot base.

Frames and Notation:
In robotics, we are often interested in the velocity of a frame relative to
the robot base. A special notation is used to express this:

(1-23)

These velocities relative to the robot base are often expressed in other
frames. The following notation is used for this:

. (1-24)

Angular Velocity of adjacent links
From (1-21) we have the relation,

(1-25)

If we assign the link coordinate frames for adjacent links  and
, with velocity computed relative to {0}, the robot base, we

can make the following substitutions in (1-25):

(1-26)

so that (1-25) becomes

. (1-27)

Here  is the relative rotation of the links due to joint rotation.

We can premultiply by  to convert the frame-of-reference for the
left side to , yielding:
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(1-28)

Substituting in the notation defined in (1-24) yields

. (1-29)

The second term of this sum is the angular velocity of  relative
to  and expressed in , which is just . The first
term can be rewritten in terms of :

, (1-30)

Equation (1-30) is recursive: it shows the angular velocity of one link
in terms of the previous link as well as the relative motion of the two
links. Since  depends on all previous links through this recur-
sion, angular velocity is said to “propagate” from the base to subse-
quent links.

Linear velocity of adjacent links
From (1-15), we have the relation,

. (1-31)

If we assign the link coordinate frames for adjacent links  and
, with velocity computed relative to {0}, the robot base, we

can make the following substitutions in (1-31):

(1-32)

so that (1-31) becomes

(1-33)

Pre-multiplying by  yields

(1-34)

which simplifies to

. (1-35)

Factoring out  from the left side of the first two terms and substitut-
ing  for the third term yields:

. (1-36)
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. (1-37)

Like (1-30) for angular velocity, equation (1-37) is recursive: it shows
the linear velocity of one link in terms of the linear and angular velocity
of the previous link as well as the relative linear motion of the two
links. Since  depends on all previous links through this recur-
sion, linear velocity is said to “propagate” from the base to subsequent
links.

Summary and Example

The primary results of this section is the angular and linear velocity
relationships between a given link and its previous link, as shown by
(1-30) and (1-37) and repeated here:

, (1-38)

. (1-39)

We will use these relations to compute  and , the angular and lin-
ear velocity of the “tool” frame relative to {0} (the robot base) and
expressed in {4} (the “tool” frame), for the following robot:

Using techniques derived in earlier parts of this class, we can specify
the homogeneous transform matrix  for each adjacent link pair:
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(1-40)

Using (1-38), we can first compute the per-link angular velocities:

(1-41)

(1-42)

(1-43)

(1-44)

Now using (1-39), we can compute the per-link linear velocities (note
that the  term has been ignored since the robot in this exam-
ple has no prismatic joints):

(1-45)
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(1-47)

(1-48)
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Robot Velocity

In robotics we are often called upon to manipulate objects with the tip
of the robot which is represented here by frame {N}.

Kinematic Relations
The location of the robot tip may be specified using either a joint space
description,

(1-49)

or using a cartesian space description,

(1-50)

where  is some 3-tuple description of the orientation of {N} relative
to {0} using Euler Angles, Fixed Angles, or some other representation.

The robot kinematics equations relate these two descriptions of the
robot tip position. Specifically, the forward kinematics, ,
allows us to determine the cartesian position given the joint positions,
while the inverse kinematics,  allows us to determine the
necessary joint positions to achieve a desired cartesian position.
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Velocity Relations
Just as the cartesian position of the robot tip is interesting, so also is the
cartesian velocity. Looking at the figure above, the necessary motions
for inserting the screw can be described as a positive angular velocity
about the x-axis of {N} while there is a small, positive linear velocity
along the x-axis of {N} as the screw is driven in.

We would like to have mathematical expressions which do for joint
velocity and cartesian velocities what forward and inverse kinematics
do for joint and cartesian position:

The Robot Jacobian

We have already used the recursive expressions for adjacent joint lin-
ear/angular velocity

, (1-51)

. (1-52)

to compute  and  for our  example robot, yielding:

 and (1-53)

Looking at the figure above, the  and  values are exactly what we
want to relate  to :
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(1-54)

If we factor out the vector  from this matrix, we get

. (1-55)

It turns out that  and  will always be a linear combination of the
joint velocity elements of . So the expression in (1-54) will always be
factorable into the form in (1-55).

We call the matrix,

(1-56)

the robot’s Jacobian matrix, expressed in frame {4}. We can use the
recursive equations in (1-51) and(1-52) to find  and  and thereby
find the  matrix for any robot.

Properties of the Jacobian

Frame of Representation
In the example above, we derived  for our example robot; this
matrix gives the cartesian velocity of the robot tip relative to the robot
base and represented in frame . We write this as

(1-57)
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where  and (1-58)

It would be useful to know how to convert the Jacobian matrix so that
the cartesian velocity,  is expressed in some other frame. We know
that since

, (1-59)

then . (1-60)

In terms of the Jacobian relation, , we can express this
change in representation as

(1-61)

so that (1-62)

is the relation which to converts a Jacobian from one frame of represen-
tation to another.

Using the result in (1-62), we can compute  for our example robot
from  given in (1-56) by
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(1-63)

The two Jacobians,  and , both give us the cartesian velocity
of the robot tip relative to the robot base

(1-64)

but  gives us this velocity represented in {4} while  gives us
this velocity represented in frame {0}.

Alternative approach to finding the Jacobian
The  matrix contains all the necessary information to describe the
position and orientation of frame {N} relative to frame {0}. Therefore,
the derivative of this matrix,  will contain all the necessary informa-
tion to describe the rate-of-change in position and orientation (i.e., lin-
ear and angular velocity) of frame {N} relative to frame {0} and
expressed in frame {0}. This is the exact information that we need to
express .

The contents of  will have the following structure:

(1-65)

If we postmultiply  by a special matrix which “cancels” the  term
in the rotation submatrix, we get a new matrix,

(1-66)
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Ṙ
0
N Ω R

0
N⋅ V

0
N

0 0 0 0

= = =

Ṫ
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which, by definition, is structured with the following elements:

(1-67)

So, to find  for any mechanism, we could do the following:

1. Compute the following matrix using  (and  from ):

(1-68)

2. Using the pattern shown in (1-67), extract the following elements
from this  matrix:

(1-69)

3. Factor out the  from (1-69) to form the velocity
relation

(1-70)

The computation of  by this approach is often more difficult than
the recursive approach shown earlier, but, as a second method to find
the Jacobian, it can provide a some additional confidence that a given
Jacobian derivation is correct if the two approaches produce identical
results (after rotating either  or  to match the frame of repre-
sentation of the other).
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The Inverse Jacobian Relation

We now have a the necessary tools to derive the Jacobian matrix for
any robot in any desired frame of representation and compute the carte-
sian velocity of the robot tip represented in that frame using

. (1-71)

Can we solve for  in terms of ? This would be very useful because
it would tell us the joint velocities necessary to achieve a desired carte-
sian velocity. We can compute this relation from (1-71) as

(1-72)

However, is  invertible? In general, the  Jacobian
matrix may be non-square in which case the inverse is undefined. A
matrix is invertible only if it has a non-zero determinant (non-invertible
matrix is called aSingular matrix). Looking at the Jacobian,  and
augmenting the robot with three zero-valued joints to make a square
Jacobian matrix,

(1-73)

we can see immediately that the matrix isnot invertible because one or
more rows or columns of zeros means that the determinant is zero.

The Reduced Jacobian
We know that a  manipulator does not have the necessary degrees
of freedom to achieve independent control of its all six cartesian veloc-
ity components, . We can see this limitation in the
Jacobian relation for our example robot:

(1-74)

we can see that the Jacobian provides a system of six equations for the
six unknown elements of  which are all dependant on the
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robot joint variables. This underdetermined system of equations must
have interdependencies among the elements of .

In this particular case, the three shaded rows of  are linearly
dependent since each can be expressed as a scaled version of another.
This linear dependence implies that only one of the three shaded ele-
ments of , , can be independently specified. For the
remaining three (unshaded) rows, any one row is linearly dependant on
the other two. This means that only two of the three unshaded elements
of , , can be independently specified.

In general, if , there will be only  independent rows in the
Jacobian matrix no matter what frame of representation. Which  rows
(and corresponding elements in ) one chooses to call “independent”
is a matter of choosing between a limited set of options.

In the case of the example robot, we could choose to consider a reduced
cartesian vector,

(1-75)

as our independant axes of control in frame {4}.

Computing the Inverse Jacobian
If we reduce the number of rows in the original Jacobian to the rows
corresponding to our choice of  in (1-75) above, then the resulting
“reduced” Jacobian matrix will be square (there are exactly  indepen-
dent rows in the Jacobian of an -link manipulator).

For our example robot, the reduced Jacobian,  will be
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Ẋ

Xr
˙4 ẋ
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(1-76)

and the cartesian velocity of the robot tip in our chosen reduced carte-
sian velocity vector will be

. (1-77)

This reduced Jacobian matrix will always be square and therefore is at
leastpotentially invertible so that wemay be able to compute the robot
joint velocity,  necessary to achieve some desired cartesian velocity,

 using

. (1-78)

Robot Singular Configurations

If we want to use the relation in (1-78) to compute , we need to first
find out at what points the inverse exists.

Since the matrix is only invertible when the it has a non-zero determi-
nant, computing the determinant symbolically allows us to find the
complete set of values of  for which the Jacobian,  is singular. In
the case of our example robot, we have

(1-79)

which has the determinant

(1-80)

so that the matrix is singular (non-invertible) when

. (1-81)

This singular condition occurs when either of the following are true:

(1-82)

If we examine the conditions in (1-82) along with the schematic of the
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ẏ

ż
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example robot below, we can see how each of these two types of “sin-

gular” positions may occur:

Joint velocity near singular positions
Imagine that a robot with the same kinematic structure as our example
robot is being used for a visual inspection task such as the one shown

When , then the
first row of  goes to zero and
the robot cannot move along the
X-axis of {4}

When the origin of {4} intersects
the z-axis of {1}, the third row of

 goes to zero and the robot
cannot move along the Z-axis of
{4}. This may only occur if

 is true.
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below. The robot system is designed so that the operator can command

the robot motions in frame {4} which is fixed relative to the camera
view. A computer system interprets the operator’s commands and com-
putes the necessary joint velocities to achieve the commanded cartesian
motion using the relation

(1-83)

The operator, who has never heard of a Jacobian or a Singularity, inad-
vertently drives the robot tip slowly along a path which takes it the near
the axis of rotation for  as shown below. We already know that the

Jacobian will be singular when the robot tip frame {4} intersects the
axis of  and that the robot will be unable to move along the  axis
since the third row of the Jacobian becomes all zeros. But what happens
when the robot isapproaches the singularity condition?

If we look at the third row of the Jacobian expressed in frame {4},

(1-84)

and solve for  in terms of , we find that

. (1-85)
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So as we approach this singularity condition withany non-zero com-
manded  value, the value of  necessary to achieve this motion
goes to infinity! The figure below show a profile of the joint velocity as
the robot moves along this trajectory. This type of trajectory causes two

problems:

1. The robot is physically limited from unusually high joint velocities
by motor power constraints, etc. So the robot will be unable to track
this joint velocity trajectory exactly, resulting in some perturbation
to the commanded cartesian velocity trajectory

2. The slopes of the joint velocity plot above represents the accelera-
tion of this joint. The high accelerations that come from approach-
ing too close to a singularity have caused the destruction of many
robot gears and shafts over the years.

ż
4 θ̇1

θ̇1

Motion along trajectory


