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Abstract
A robot system generally has several degrees of freedom of motions as well as different kinds of sensors.
Basic behaviors are planned based on these sensors’ feedback. We take advantage of the Jacobian matrix to
describe the differential relations between the sensor feedback and the motor motions. Hence, the relation
between two sensors could be formulated by the two respective Jacobian matrices of both sensors to motors.
Multisensor integration can, thus, be employed for better performance of the robot system. Experiments of
basic behavior acquisition like gazing and posture control of a robot head are conducted. The performances
of the two basic behaviors before and after multisensor integration are compared, which demonstrate the
performance and robustness of the proposed multisensor integration method.
© Koninklijke Brill NV, Leiden and The Robotics Society of Japan, 2009
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1. Introduction

Cognitive processes at high-level abstractions rely on a hierarchy of lower-level
behaviors. Low-level autonomous behaviors can be constructed from basic senso-
rimotor behaviors [1, 2]. A basic sensorimotor behavior can be a reflex, which is
a direct motor response to sensor feedback. Basic behavior designs are essential to
a behavior-based robot. In order to acquire basic behaviors, most designers make
assumptions about how autonomous robots perceive the world and take advantage
of the prior knowledge of the sensorimotor maps. The basic behaviors are pro-
vided by a set of basic modules or layers defined as the fundamentals of a more
complex system [3, 4]. This strategy reduces the chances of generating diverse,
adaptive and unexpected behaviors from the dynamic interaction between the robot
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and the environment [5]. If basic behaviors are determined without examination, it
is most probable that the behavior control of the system might be inefficient or even
completely wrong. An alternative to overcome these limitations is to acquire basic
behaviors by the robot itself [6].

Many attempts have been made to achieve this goal, such as by reinforcement
learning [7–10], by artificial neural networks [11, 12], by genetic algorithms [13,
14], etc. Owing to the simplicity of the plant and the enormous knowledge about
the biological oculomotor control system, the head–eye control system is the best-
studied sensorimotor control system [15, 16]. There have been some attempts to ac-
quire basic behaviors, such as visual tracking and gaze control, from the interaction
of the robot with the environment. In Ref. [17], the proposed robot first performs
random movements, so that the relation between the actuator apparatuses and the
visual sensors is modeled. The robot can then perform visual tracking. Marjanović
et al. [18] use the self-supervised learning method to obtain the map between the
eye, the head and the end-effector. Thus, the humanoid robot Cog can perform fun-
damental visuomotor coordination tasks, such as gazing at an object while reaching
it. In Ref. [19], the system first learns a forward model that predicts how image
features move in the visual field when the gaze is shifted. It can then perform gaze
control by searching for the action that makes the target feature projected in the
center area of the image plane. Although above systems can achieve high perfor-
mance, gaze control driven only on the basis of visual information is easily exposed
to failure when the head–eye system has to face unknown perturbations of the body
[20]. In humans, the vestibular system senses the positions of the head and the body
in space. The information provided by the vestibular system is fused at a very early
processing stage with vision. It also plays an important role in gaze control [21, 22].

Gaze control integrated non-visual information has received little attention so far.
In Ref. [23], the proposed binocular system is controlled by integrating visual and
inertial information. The visuo-inertial integration is implemented by considering
the geometry of the binocular system and the knowledge of actual gaze configu-
ration (the gaze distance and direction). Shibata et al. [24] deal with the problem
of visuo-inertial integration by reproducing a computational model of the biologi-
cal reflexes system. Panerai et al. [20] use an adaptive neural network to learn to
map visual and inertial signals to motor commands. Thus, the proposed system can
adaptively generate stabilized gaze.

Apart from gaze control, the control of head posture is also important when the
head system is used for the human–robot interaction. Humans use many kinds of
body language, such as nodding, shaking one’s head, etc. Both the vestibular system
and the visual system play an essential role in the control of head posture [25].
There is work on the posture control of articulated mobile robots, but little on the
integration of the posture control with visual information.

It is realized that many basic behaviors are inherently the kinds of direct mo-
tor responses to some sensor feedback. The sensors can be real sensors (hardware)
or virtual sensors (software or an algorithm that gives the position of the attention
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point). More complex behaviors can be constructed either by sequencing or by in-
tegrating acquired basic behaviors. During assisted learning, for example, the robot
should be able to make inquiries about objects to a nearby person, by means of
gazing at the person, turning its head, gazing at an object and/or asking a ques-
tion. This complex behavior can be constructed by sequencing the control of head
posture and gaze control. Gaze control can be acquired based on visual sensors,
while the control of head posture can be acquired based on inertial sensors. For
many basic behaviors, the differential relations between the sensor feedback and
the robot’s motions can be linearly described. In the field of image-based visual
servoing, the image Jacobian model is used to linearly describe the differential re-
lation between the visual sensor feedback and the robot’s motion [26, 27]. We also
take advantage of the Jacobian matrix to describe the differential relations between
the sensor feedback and the motor motions. Thus, basic behaviors, such as gaze
control and the control of head posture, can be generated from the corresponding
sensors. When there are multiple basic behaviors in the system, it is necessary to
integrate all of them to generate coordinative behaviors. For a multisensor robot
system, it is also expected to integrate different sensors so as to use their comple-
mentary features for better performance. We describe a strategy to take advantage of
the Jacobian matrices to integrate these basic behaviors. Furthermore, we propose
a multisensor integration method for better performance by reusing these Jacobian
matrices. A system identification method is used to estimate the Jacobian matrices
online and, thus, makes the system free from the innate knowledge regarding the
sensors and the motors. In order to realize the flexibility of the proposed method, a
multi-agent-based implementation is also proposed.

The rest of the paper is organized as follows. In Section 2, we propose our method
to acquire basic behaviors. Section 3 proposes the multisensor integration method
and Section 4 proposes the multi-agent-based implementation of the control sys-
tem. Experiments are provided in Section 5 to demonstrate the validity and the
performance of the proposed method. Conclusions and future work are provided in
Section 6.

2. Behavior Acquisition

2.1. Basic Behavior Control

Suppose the robot system has n d.o.f. The joint variables of the n d.o.f. are denoted
by q = [q1, q2, . . . , qn]T. The control input uc(t) to the system at the time moment
t is the desired increment of q. Suppose the sensor si has l outputs. The current
state and the desired state of the sensor si are denoted by ysi = [y1, y2, . . . , yl]T and
rsi = [r1, r2, . . . , rl]T, respectively. In order to acquire a basic behavior based on the
sensor si , the problem is to determine the control input uc based on the current and
the desired state of the sensor si .

The mappings between the sensors and the motors are currently considered to be
continuous, differentiable and time-invariant. Thus, the relation between the sen-
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sor si and the joint variables is:

yi = fi(q) i = 1, . . . , l. (1)

Thus, the differential relation is:

dyi = aT
i dq i = 1, . . . , l, (2)

where ai = [ ∂yi

∂q1
,

∂yi

∂q2
, . . . ,

∂yi

∂qn
]T. So:

ysi = f(q), (3)

and

dysi = Jsi dq, (4)

where Jsi = [ ∂f
∂q ] = [a1,a2, . . . ,al]T is a Jacobian matrix that is of all partial deriv-

atives of the vector function f. It relates the sensor si’s feedback with the motor
motions. We take advantage of the Jacobian matrix to describe the sensorimotor
maps between the sensors and motors. The Jacobian matrix could be estimated by
an on-line estimation method. In order to generate a basic behavior from the sen-
sor si , the resolved-rate motion control [27] can be used. The proportional control
law is given by:

uc = Ksi J
+
si (rsi − ysi ), (5)

where Ksi is the constant gain matrix of appropriate dimension and J+
si is the

pseudo-inverse of Jsi .

2.2. Multi-Behavior Integration

If there are multiple sensors in the robot system, there will be multiple behaviors
based on these sensors. The controllers of these behaviors will drive the motors
simultaneously, thus it is necessary to integrated all of these behaviors for a coordi-
native behavior. Suppose there are k sensors in the system, we solve the equations
for dq of all these sensors simultaneously as follows [28].

Combining (4) of all k sensors, we have:
⎡
⎢⎢⎣

dys1

dys2
...

dysk

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

Js1

Js2
...

Jsk

⎤
⎥⎥⎦dq. (6)

The least-squares solution of dq is given by:

dq =

⎡
⎢⎢⎣

Js1

Js2
...

Jsk

⎤
⎥⎥⎦

+ ⎡
⎢⎢⎣

dys1

dys2
...

dysk

⎤
⎥⎥⎦ . (7)
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Using the simple proportional feedback control, the control input to the system after
integration can be determined as:

uc(t) = Kc

⎡
⎢⎢⎣

Js1

Js2
...

Jsk

⎤
⎥⎥⎦

+ ⎡
⎢⎢⎣

rs1 − ys1

rs2 − ys2
...

rsk − ysk

⎤
⎥⎥⎦ , (8)

where Kc is the constant gain matrix of appropriate dimension. Let Jc = [JT
s1

,JT
s2

,

. . . ,JT
sk ]T, �i = rsi − ysi and � = [�T

1 ,�T
2 , . . . ,�T

k ]T, then (8) can be rewritten
more concisely as:

uc = KcJ+
c �. (9)

As (7) gives the least-square solution of dq, such a control law will try to mini-
mize the deviations from the desired states and the current states of all these sensors.
Compared with conventional integration methods, such as averaging, voting, etc.,
this method is less arbitrary and more flexible.

2.3. Online Estimation of the Jacobian Matrix

In order to enable the robot to acquire basic behaviors online, an online estimation
method of the Jacobian matrix is proposed. The recursive least-squares (RLS) esti-
mation method is widely used for system identification [29]. RLS can be interpreted
as a Kalman filter for the process:

θ(k + 1) = θ(k) (10)

v(k) = ϕ(k)Tθ(k) + ν(k), (11)

where θ(k) is the state to be estimated, v(k) is the measurement, ϕ(k)T is the mea-
surement matrix and ν(k) is the noise. In order to use RLS to estimate the Jacobian
matrix between sensors and motors, let:

θ(k) = [aT
1 ,aT

2 , . . .]T (12)

v(k) = y(k) − y(k − 1) (13)

�q(k) = q(k) − q(k − 1) (14)

ϕ(k) =
⎡
⎣

�q(k) 0
. . .

0 �q(k)

⎤
⎦ , (15)

where q are the joint variables, y is the current sensor state and aT
i is the ith row of

the Jacobian matrix J. Then J can be estimated at every time step recursively as:

K(k + 1) = P(k)ϕ(k + 1)(I + ϕT(k + 1)P(k)ϕ(k + 1))−1 (16)

θ̂ (k + 1) = θ̂ (k) + K(k + 1)[v(k + 1) − ϕT(k + 1)θ̂(k)] (17)

P(k + 1) = (I − K(k + 1)ϕT(k + 1))P(k), (18)
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where K is the gain matrix and P is the covariant matrix. Such a RLS estimator has
been proven to be an effective method for online estimation of the image Jacobian
matrix [30]. The initial condition P(0) is chosen such that it is positive and propor-
tional to the parameter prior covariance. Online estimation of the Jacobian matrices
can make the system free from the knowledge regarding the sensors and the motors.
Moreover, it can make the final system more robust against the parameter changes
of sensors and motors.

3. Multisensor Integration

If there are multiple sensors in the system, it is expected to integrate different sen-
sors in order to utilize their complementary features for better performance. For the
sensor si , its current state at time moment t can be written as:

ysi (t) = ysi (kTsi ) +
∫ t

kTsi

dysi , (19)

where Tsi denotes the sample period of the sensor si and kTsi is the recent time
when the sensor si outputs the last data. If there is another sensor sj , similar to (4),
we have:

dysj = Jsj dq, (20)

in which Jsj is a m × n matrix. Hence, if m = n and Jsj is non-singular, J−1
sj exists.

In this case:

dq = J−1
sj dysj . (21)

From (4), (19) and (21), we have:

ŷsi |sj (t) = ysi (kTsi ) +
∫ t

kTsi

Jsi J
−1
sj dysj

= ysi (kTsi ) + Jsi J
−1
sj (ysj (t) − ysj (kTsi )), (22)

where ŷsi |sj (t) denotes the estimation of the sensor si ’s current state with the help
of the sensor sj .

If m �= n, J−1
sj does not exist. In this case, assume that Jsj is of full rank (i.e.,

rank(Jsj ) = min(m,n)). We can have a least-squares solution of dq. The general
solution is:

dq = J+
sj dysj + Qz, (23)

where J+
sj is the pseudo-inverse of Jsj , Q is the orthogonal projection operator on

the null space of Jsj and z is an arbitrary vector of appropriate dimension.
If m > n, Q = 0 and the pseudo-inverse of Jsj could be:

J+
sj = (JT

sj Jsj )
−1JT

sj . (24)
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Therefore:

dq = (JT
sj Jsj )

−1JT
sj dysj . (25)

In this case, the system is over-constrained, which means the sensor sj has more
feedback than the robot’s degrees of freedom and there are enough features to
uniquely determine the robot motions. From (4), (19) and (25), we have:

ŷsi |sj (t) = ysi (kTsi ) + Jsi (J
T
sj Jsj )

−1JT
sj (ysj (t) − ysj (kTsi )). (26)

If m < n, Q �= 0 in general and all vectors of the form Qz lie in the null space
of Jsj and correspond to the unobservable components of the robot motions. In
this case, the system is under-constrained, which means some components of the
robot motions cannot be observed only by the sensor sj . Unless we introduce an-
other sensor feedback, dq cannot be estimated. From (22) and (26), the current state
estimation of the sensor si by the sensor sj can be rewritten more concisely as:

ŷsi |sj (t) = ysi (kTsi ) + Jsi J
+
sj (ysj (t) − ysj (kTsi )), (27)

where m � n and Jsj is of full rank or non-singular. Therefore, a sensor’s current
state can be obtained by its reading or its estimates by other sensors.

This kind of integration has the following advantages. (i) We do not correlate two
sensors by the relationship between them directly, but by their respective relations
with the robot self-motions. Thus, the Jacobian matrices available could be re-used
to plan the robot motion. This strategy could hence reduce the computational com-
plexity, especially when there are a large amount of sensors needed to be integrated.
(ii) The state of a sensor that is computationally intensive could be estimated by the
states of other sensors that are computationally cheap. (iii) The system could be
more robust against failures. When a sensor fails, its state could still be estimated
from those of the others. (iv) ŷsi has a higher sample rate than ysi . This can improve
the control performance of the system in most cases.

4. Multi-Agent-Based Implementation of the Control System

The multi-agent-based strategy could be adopted to implement the proposed method
of higher flexibility. The agents are modules of independent functions. We propose
two kinds of agents, which are the sensor agent and the control agent. The imple-
mentation of the sensor agent is illustrated in Fig. 1. Each sensor in the robot system
has a sensor agent. The inputs to the sensor agent i are the current state, ysi , the de-
sired state, rsi , of the sensor si , the joint variables, q, and the current states of other
sensors. The output of the sensor agent i is the desired state change, �i , of the sen-
sor si . The Jacobian matrix in the sensor agent i is estimated each time when there
is a new feedback from the sensor si . Multisensor integration is performed when
any sensor state changes. The control agent calculates the control input to the sys-
tem according to (9). The inputs to the control agent are the desired state changes
from all sensor agents. The output of the control agent is the control input to the
system, uc.
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Figure 1. Implementation of the sensor agent.

Figure 2. The multi-agent-based implementation of the control system.

The final multi-agent-based implementation of the control system is shown in
Fig. 2. All agents are fully connected with the others. Each agent sends and receives
additional data if necessary. If the desired state of a sensor agent is not explicitly
defined, the sensor will not drive the motors. This is realized by excluding the sensor
from (8). A specific behavior can be activated or deactivated by explicitly defining
the desired state of the corresponding sensor or not. New behaviors can be acquired
by adding new sensors to the system. More complex behaviors can be constructed
either by sequencing or by integrating available basic behaviors.

5. Experiments

Without loss of generality, the robot head shown in Fig. 3 is taken as an example
to test the proposed method. The artificial vestibular system of the robot head is
simplified and is assembled with a low cost two-axis tilt sensor and an electronic
compass module. They are fixed on the top of the robot head and used to sense the
roll, pitch, and yaw of the head motions as shown in Fig. 3b. The visual system
consists of two color CCD cameras with PAL TV output. Video signals are grabbed
and processed by a workstation. These two sensory systems are integrated within
a binocular architecture. Two stepper motors are used to drive the pan axis and the
tilt axis (see Fig. 3d).
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(a) (b)

(c) (d)

Figure 3. Experimental environment, robot head and coordinate systems. (a) Photo of the experiment
environment. (b) Photo of the robot head. (c) Photo of the test platform. (d) The coordinate systems
for the robot head.

In the experiments, we use three kinds of sensors and implement three sensor
agents, i.e., the attention-detecting agent, the retinal slip agent and the vestibular
agent. The current state and the desired state of the attention-detecting sensor are
denoted by ya and ra, respectively. They are the current and the desired positions
of the attention point in current image. In experiments we choose the center of a
cartoon human face as the attention point. The cartoon human face is detected by a
boosted cascade of simple features method [31, 32]. It is performed every 500 ms
by the workstation. Generally, retinal slip can denote both a position error and the
velocity of an image on the retina. We explicitly use it as a position error. In our
experiments, 10 feature points with large eigenvalues are selected in the 50 × 50
image whose center is the most recently detected attention point. Then they are
tracked based on the sparse iterative method version of Lucas–Kanade optical flow
in pyramids [33]. The retinal slip is the mean position error of all feature points.
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The current state and the desired state of the retinal slip sensor are denoted by yr
and rr, respectively. The calculation of the retinal slip is performed every 50 ms by
the workstation. The vestibular sensor’s current state is the output of the tilt sensor
and the electronic compass module, which is read every 33 ms. Its current state and
desired state are denoted by yv and rv, respectively.

Denote the head posture by Ph(t), the posture of the head’s base by Pb(t) and
the position of the attention point by p(t), then:

ya = fa(p(t),Ph(t)) (28)

yr = fr(p(t),Ph(t)) (29)

yv = fv(Ph(t)) (30)

Ph(t) = g(q,Pb(t)), (31)

where q are the joint variables. Thus, the differential relations are:

ẏa = Jaq̇ + δa (32)

ẏr = Jrq̇ + δr (33)

ẏv = Jvq̇ + δv, (34)

where Ja, Jr and Jv are the Jacobian matrices of the attention-detecting agent, the
retinal slip agent and the vestibular agent, respectively. The coordinate systems for
the head are shown in Fig. 3d. The pan axis and the tilt axis are not parallel, so
Jv is a 3 × 2 full rank matrix. In general, Ja and Jr are both 2 × 2 matrices and
non-singular. Thus, all above matrices satisfy the condition of (27) and they could
be used in the proposed multisensor integration way.

In the following experiments, the head’s base is fixed on the top of a test platform
(Fig. 3c). The test platform rotates back and forth on the test axis, which generates
the external perturbation of the head. Only the left camera is used and a 320 ×
240 image is acquired. Owing to the existence of delay in the control loop and
unmodeled dynamics, large feedback gains may cause system instability. Therefore,
the gain matrix Kc in the control agent is assigned to a 2 × 2 diagonal matrix with
all diagonal elements of 0.1. Without loss of generality, only tilt rotation movement
of the head is considered for simplicity hereafter.

5.1. Jacobian Matrix Online Estimation

In the first experiment, both the test platform and the cartoon human face are static,
while the head moves voluntarily. The voluntary movement is generated randomly
with the highest frequency less than 1.5 Hz and the amplitude less than 150 steps as
shown in Fig. 4. During the voluntary movement of the head, each sensor feedback
is recorded and the Jacobian matrix in each sensor agent is estimated online. The
initial condition, P(0), in each sensor agent is an identity matrix. For simplicity of
expression, only one element of the mentioned matrix is shown in the following
figures. As shown in Fig. 5, every a priori estimate error covariances matrix, P(k)

in each sensor agent, tends to be zero and every Jacobian matrix is nearly invariable
after 20 s.
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Figure 4. The voluntary movement of the head and each sensor feedback. ya and yr are both in pixels,
yv is in degrees, and q is in steps.

(a) (b)

Figure 5. Jacobian matrix online estimation. (a) P(k) during Jacobian matrix estimation. (b) Jacobian
matrices during estimation.

5.2. Gaze Control with Multisensor Integration

After the Jacobian matrix is nearly invariable in the attention-detecting agent, let
ra = [160,120]T. When the test platform or the cartoon human face is moving,
gaze control behavior can be observed. When the attention point is fixed in front
of the head, let the test platform generate the motions of the head’s base as shown
in Fig. 6. The gaze control errors are recorded and shown in Figs 7–9. In order
to compare the gaze control performance before and after multisensor integration,
the gaze control errors’ standard deviations, as a measure of spread, are compared.
Before multisensor integration, the gaze control errors’ standard deviation is about
8.526 pixels. After the multisensor integration, it drops to 4.348 and 3.147 pixels,
respectively.
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Figure 6. Motions of the head’s base caused by the test platform.

Figure 7. Gaze control before multisensor integration.

5.3. Head Posture Control with Multisensor Integration

After the Jacobian matrix is nearly invariable in the vestibular agent, let rv =
[0,0,0]T. When the test platform generates the same motions of the head’s base
as shown in Fig. 6, the posture control behavior of the head can be observed. The
posture control errors are recorded and shown in Figs 10–12. The posture control
errors’ standard deviations, as a measure of spread, before and after multisensor
integration are compared. Before multisensor integration, the head posture control
errors’ standard deviation is about 0.318◦. After the vestibular sensor is integrated
with the retinal slip sensor and the attention-detecting sensor, it drops to 0.217◦ and
0.210◦, respectively.

The three experiments above show that the proposed method can generate gaze
control and the control of head posture online by setting the corresponding sen-
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Figure 8. Gaze control after the integration of the attention-detecting sensor with the retinal slip
sensor.

Figure 9. Gaze control after the integration of all sensors.

sor’s desired state. They also demonstrate that the proposed multisensor integration
method improves the control performance of the two behaviors.

5.4. More Benefits of the Multisensor Integration

Finally, we will further explore the advantages of the proposed multisensor inte-
gration in the robustness against some sensor failures and its computational sim-
plification. The attention point detection is fragile to luminance change and image
distortion. The attention-detecting sensor may fail to detect the attention point oc-
casionally as we have seen during our experiments. In this experiment, we use
a piece of white paper to cover a small part of the cartoon face occasionally. It
will make the attention-detecting sensor fail to detect the attention point more fre-
quently. The gaze control errors are compared before and after integration. Figures
13 and 14 show that the gaze control errors are reduced after the attention-detecting
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Figure 10. Posture control before multisensor integration.

Figure 11. Posture control after the integration of the vestibular sensor with the retinal slip sensor.

Figure 12. Posture control after the integration of all sensors.
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Figure 13. Gaze control before multisensor integration.

Figure 14. Gaze control after multisensor integration.

sensor integrated with the other two sensors. As only a small part of the cartoon
face is covered, most feature points can still be tracked by the retinal slip sensor.
The vestibular sensor can always track the motions of the head. Thus, when the
attention-detecting sensor fails to detect the attention point, the position of the at-
tention point can still be estimated from the current states of the retinal slip sensor
and the vestibular sensor. This results in smaller gaze control errors. In this ex-
periment, the attention-detecting sensor is computationally more intensive than the
others. If we reduce the attention-detecting frequency deliberately, the system could
achieve the same performance as before by the proposed multisensor method, but
using less computation.

6. Conclusions and Future Work

Our research goal is to investigate a mechanism to acquire basic behaviors and mul-
tisensor integration for a more complex humanoid robot. This paper takes a first
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step towards this goal by exploring gaze control and the control of head posture.
We demonstrate that Jacobian matrices cannot only be used to describe the senso-
rimotor correlation and then generate basic behaviors, but they can also be used to
integrate acquired behaviors. Moreover, they can also correlate different sensors’
feedback and then be used to realize multisensor integration. We propose the multi-
agent-based implementation to realize the flexibility of the proposed method itself.
A system identification method, RLS, is used to estimate the Jacobian matrix on-
line. Online estimation makes the system free from advance calibration between
the sensors and the motors, and makes the system robust against some sensor and
motor failures. Multisensor integration improves the performance of gaze control
and the control of head posture. It can also improve the robustness against some
sensor failures and be used to reduce the overall computation for a given task.

Sensory latency and control delay normally exists in the proposed system, which
will make the estimation of the Jacobian matrix, the system control and the mul-
tisensor integration more complex. How to cope with the delay and latency will
be our further work. As in the conventional image Jacobian matrix approach, the
convergence and stability of the proposed method is also under investigation.
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