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Abstract: The paper is aimed at an energetically efficient control method for biped walking. The walking cycle is composed
of successive single-support phases and passive impacts. Aparametric trajectory optimization method is implementedthat
finds symmetric, periodic, low torque walking gaits for a planar 5-link biped robot offline. The robot’s configuration is then
regulated by RHC (receding horizon control) with the same optimization criterion online. Only the geometric evolutionof the
robot’s configuration is controlled, but not the temporal evolution. The effectiveness of the proposed method is evaluated using
simulated walking control. The results show lower torques and more robustness from the proposed controller compared toa
hand-tuned PD servo based walking controller.
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1 INTRODUCTION

The control of biped walking remains a difficult problem due
to high dimensionality, nonlinearity, the intermittent contact
between the feet and the ground, and constraints on kinemat-
ics and dynamics, such as joint limitations, the foot clearance
requirement, and the foot-ground contact conditions [1].
By far, the most common approach to biped walking con-
trol is through tracking pre-computed reference trajectories.
The most popular technique used to generate reference tra-
jectories is based on the concept of ZMP (Zero Moment
Point) [1]. Emphases are placed on enlarging the stabil-
ity margin during gait planning [3, 4]. Another most pop-
ular technique is based on LIPM (Linear Inverted Pendulum
Model) [5]. Because of the simplification of the whole dy-
namics as a linear system, modern control techniques can be
used [6]. However, these techniques make use of a simpli-
fied dynamic model and do not take internal motions into
account, the resultant walking control is not energetically ef-
ficient in general.
Walking control with optimal gaits is desirable for longer
operation time and more human-like motions. The most fre-
quently used approach for gait optimization is based on para-
metric optimization, in which the joint coordinates and/or
the control variables are taken as optimization variables
[2, 7] or they are approximated using an appropriate func-
tion approximation (e.g., polynomial approximation [8–11],
Fourier extensions [12]). The coefficients of these functions
are then treated as optimization variables. Then, the gait op-
timization problem can be solved by general nonlinear pro-
gramming methods, such as sequential quadratic program-
ming (SQP) [13].
With the context of tracking, many feedback control meth-
ods have been explored, such as PID controllers, computed
torque and sliding model control [14]. Unfortunately, for an
underactuated system, even high feedback gains sometimes
cannot stabilize the system around a reference trajectory in
the presence of external perturbations or modeling errors.
RHC (receding horizon control), also known as model pre-
dictive control, was first proposed for linear systems, and
then applied to general nonlinear systems [15, 16]. With the
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improvement of computation speed of current controllers,
RHC is now applicable to articulated robot control [17]. The
use of RHC for biped walking control is motivated by its
ability to handle constrained nonlinear systems. It is suitable
to the problem of biped walking control, which is subject
to joint limitations, the requirements of ground-foot contact,
and disturbances. By introducing artificial constraints such
as those on the body’s posture and the swing limb trajectory,
RHC was used to generate walking gaits without reference
trajectories [18]. In [19], RHC using a simplified model was
used to generate the reference ZMP trajectory online. How-
ever, RHC using a simplified model cannot generate walking
gaits with the same efficiency as those generated by gait op-
timization using a full dynamic model and with an infinite
time horizon.

Long-term stability and efficiency of walking gaits can be
achieved by offline optimization with an infinite time hori-
zon, while short-term stability and efficiency of gait control
can be achieved by online optimization with a finite time
horizon. In this paper, we propose an implementation of gait
optimization with an infinite time horizon using a nonlinear
parametric optimization method. The finite set of unknowns
consists of the duration of the single-support phase, the joint
coordinate values and the control values at uniformly dis-
tributed time intervals during the motion. In order to make
these optimal gaits stable walking cycles, we take advantage
of receding horizon control using a full dynamic model.

This article is organized as following: in Section 2, the robot
model for our simulation study is proposed. In Section 3,
a parametric optimization method for gait optimization with
an infinite time horizon is proposed, which provides desired
geometric evolutions of the robot’s configuration for speci-
fied walking speeds. Gait control with receding horizon con-
trol using a full dynamic model is then proposed, which reg-
ulates the geometric evolution of the robot’s configuration
and makes an optimal gait a stable walking cycle. In Section
4, simulation and comparison with a hand-tuned PD servo
controller results are presented, which demonstrate the va-
lidity, robustness, and performance of the proposed method.
Conclusions and future work are discussed in Section 5.



Fig. 1: Simplified structure of the planar 5-link biped robot
used for our study.

Tab. 1: Physical parameters of the simulated robot

calf thigh torso
mass [kg] 6.90 5.68 50.00

inertia [kg · m2] 0.15 0.10 1.50
length [m] 0.38 0.39 0.80

lcm[m] 0.24 0.19 0.29

2 Robot Model and Model Assumptions

The robot, as shown in Fig. 1. A planar 5-link biped robot
is used in our current study, but the proposed method can
be easily extended to a 3-D biped robot. The robot has a
torso and two identical legs with knees. Although we do
not model the feet, the ankle joint of stance leg can apply
torques. Kinematic and dynamic parameters of the simu-
lated robot are according to a real hydraulic humanoid robot
and listed in Table 1. The hydraulic humanoid robot allows
us to control its joint torques directly. As in [14], we do
not consider the double-support phase, either. Therefore,all
walking cycles consist of successive phases of single support
and passive impacts, while the robot progresses from left to
right.

The walking cycle has two mathematical models: ordinary
differential equations, describing the dynamics during the
single-support phase, and an impact model, describing the
instantaneous change in the velocities during impact. The
biped model is then hybrid in nature, consisting of a contin-
uous dynamics and a discrete impact effect [14].

2.1 Single Support Model

In the single-support phase, a biped robot is modeled as a
rotational joint open-chain manipulator with five links. The
dynamic model of the robot during this phase has five de-
grees of freedom. Letq = (q1, . . . , q5)

T be the general-
ized coordinates describing the configuration of the robot
depicted in Fig. 1. Since only symmetric gaits are consid-
ered, the same dynamic model is used no matter which leg is
the stance leg, and the coordinates are relabeled after impact.
The dynamics equations can be derived using the method of

Lagrange. The result is a standard second order system

M(q)q̈ + h(q, q̇) = u 0 < t < T (1)

whereM(q) ∈ R
5×5 is the inertia matrix,h(q, q̇) ∈ R

5

is the vector of centrifugal, Coriolis, and gravity forces,
u = (u1, . . . , u5)

T is the actuated torque vector, andT is
the duration of single-support phase. The second order sys-
tem of (1) can be written in state space form by defining

ẋ =

[

q̇

M−1(q)
(

− h(q, q̇) + u
)

]

= f(x) + g(x)u 0 < t < T (2)

wherex = (qT , q̇T )T .

2.2 Impact Model

The impact between the swing leg and the ground is modeled
as a contact between two rigid bodies. The assumptions are

1. The revolute joints connecting each two links will be
assumed to be ideal, that is, perfect elastic and no me-
chanical tolerance [20].

2. The impact is instantaneous. The impulsive forces due
to the impact may result in an instantaneous change in
the velocities, but there is no instantaneous change in
the positions.

3. Centripetal torques are assumed to be smaller than the
impulsive external forces and are neglected.

4. The contact of the swing leg end with the ground results
in no rebound and no slipping of the swing leg, and the
stance leg lifting from the ground without interaction.

The impact model of results in a smooth map [14]:

x+ = ∆(x−), (3)

wherex− = limτ→T− x(τ) is the value of the state ’just
prior impact’ at timeT− andx+ = limτ→T+ x(τ) is the
value of the state ’just after impact’ at timeT +. Function
∆(·) is

∆(x−) =

[

R 0
0 R

] [

q−

∆q̇(q−)q̇−

]

, (4)

where∆q̇(q) is a5×5 matrix of smooth function ofq andR
is a constant matrix such thatRq accounts for relabeling of
the robot’s coordinates which makes the swing leg become
the stance leg.

2.3 Hybrid Dynamic Model

The overall biped robot dynamics can be expressed by a
hybrid dynamic system consisting of ordinary differential
equations and a discrete map:

ẋ =f(x) + g(x)u x− /∈ S (5)

x+ =∆(x−) x− ∈ S (6)

whereS = {x|pv
2(x) = 0, ṗv

2(x) < 0} (see Fig. 1 for the
definition ofpv

2). As shown in Fig. 2, the robot mechanics
system evolves according to the ordinary differential equa-
tions (5) until the state in setS when impact occurs. The
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Fig. 2: A hybrid dynamic system for biped walking

impact with the ground results a rapid change in the velocity
components of the state. The impact model also relabels the
state components. The ultimate result of the impact model
(6) is a new initial state from which the robot model evolves
until the next occurrence of impact.

3 Walking Control with Optimal Gaits

3.1 Gait Optimization with An Infinite Time Horizon

The cost functional of one walking cycle is defined as

J ′(x(·),u(·)) =

∫ T−

0+

ǫtL
(

x(t),u(t)
)

dt (7)

whereǫ ∈ (0, 1) is a discount factor andL is Lagrangian,
which will be defined later. For symmetric and periodic
walking gaits, the following equations should hold

x(T +) = x(0+) (8)

x(t + T ) = x(t) (9)

u(t + T ) = u(t) (10)

∀t > 0 and t 6= kT k = 1, . . . ,∞.

Thus the cost functional of an infinite time horizon

J1 =

∫ T−

0+

ǫtL(x,u)dt +

∫ 2T−

T+

ǫtL(x,u)dt + . . .

= (1 + ǫT + ǫ2T + . . . )J ′

=
1

1 − ǫT

∫ T−

0+

ǫtL
(

x(t),u(t)
)

dt. (11)

Gait optimization is to find the duration of single-support
phase,T , the state trajectory,x(t), and the corresponding
control trajectory,u(t), for 0 < t < T such that the cost
functionalJ1 is minimized, subject to equations of motion,
joint limitations, and periodic conditions.
This problem can be cast as a nonlinear optimization prob-
lem by discretizing the time interval(0, T ) into N small
time intervals and writing discrete approximations for the
derivatives that appear in the robot model. By treating the
state and the control variables at discrete-time intervalsas
optimization parameters, the continuous-time optimal con-
trol problem can be transformed to a nonlinear program-
ming problem. Lettingq(j) denote the value ofq at time
j(T/N), j = 0, 1, . . . , N , we define the discrete approxi-
mations to the first-order derivatives at the midpoint of each

time interval as follows:

q̇(j − 0.5) =
q(j) − q(j − 1)

(T/N)
j = 0, . . . , N. (12)

Therefore, the discrete approximations to the first-order
and the second-order derivatives ofq at time interval
j = 0, . . . , N − 1 are given by midpoint discretization [21]
as

q̇(j) =
q̇(j − 0.5) + q̇(j + 0.5)

2
(13)

and

q̈(j) =
q̇(j + 0.5) − q̇(j − 0.5)

(T/N)
. (14)

The cost functionalJ1 now becomes a cost function in form
of

J1 =
1

1 − ǫT

N−1
∑

j=0

ǫj(T/N)L
(

x(j),u(j)
)

(T/N), (15)

wherex(j) = (q(j)T , q̇(j)T )T andu(j) is the value ofu at
time j(T/N).
In order to generate an efficient gait of a specified walking
speed,L is chosen as

L(x,u) = wu

5
∑

i=1

u2
i +wv(v(x)− vd)2 +wrf

h
1 (x)2, (16)

wherewu, wv, andwr are weighted factors,vd and v(x)
are respectively the desired walking speed and the horizontal
velocity of the hip,fh

1 (x) is the horizontal component force
of the ground reaction forces (as depicted in Fig. 1), which
can be calculated by the inverse dynamics of the robot. The
last term on the right-hand side of (16) is for reducingfh

1 to
satisfy the limitations of the friction between the stance foot
and the ground.
In summary, gait optimization for a specified walking speed
is to find

min
q(·),u(·),T

J1(q(·),u(·), T ) (17)

subject to

q̈(j) = M−1
(

q(j)
)

(

− h
(

q(j), q̇(j)
)

+ u(j)
)

∀j ∈ [0, N) (18)

T > 0 (19)

q(N) = qf (20)

x(0) = ∆(x(N)) (21)

x(j) ∈ X ∀j = [0, N ] (22)

u(j) ∈ U ∀j = [0, N) (23)

pv
2(N/2) > 0.05, (24)

with N , ǫ, qf andvd are specified.X is the set of feasible
state andU is the set of feasible control.X andU are given
by

X = {x ∈ R
10|xmin ≤ x ≤ xmax} (25)

U = {u ∈ R
5|umin ≤ u ≤ umax}. (26)

The foot clearance constraint of (24) is to keep the swing
foot high enough from touching the ground. We solve this
optimization problem by an optimization software package,
SNOPT [13].



3.2 Gait Control with Receding Horizon Control

Receding horizon control (RHC) is used to stabilize the robot
and regulate the geometric evolution of the robot’s configu-
ration. The cost functional of RHC is in the form of

J2 = φ
(

x̄(Tc)
)

+

∫ Tc

0

ǫτL
(

x̄(τ), ū(τ)
)

dτ, (27)

whereφ(·) is the endpoint cost function,x̄ andū are the state
and the control vectors onτ axis,Tc is the time horizon of
RHC, andL is the same as (16). Letxo(t′) denote the state
of an optimal gait, which is the closest state to current state
x(t) according to the distance,

(

ph
hip(x) − ph

hip(x
o)

)2
(ph

hip

is the horizontal position of the hip). Then the endpoint cost
functionφ(·) is chosen as

φ(x̄(Tc)) = ∆x(Tc)
T
Sf∆x(Tc) (28)

where
∆x(Tc) = x̄(Tc) − xo(t′ + Tc), (29)

xo(t′ + Tc) is the state of the optimal gait at timet′ + Tc,
andSf is a diagonal weighted matrix.
RHC needs to find the control trajectory,ū(τ), for 0 ≤ τ ≤
Tc such thatJ2 is minimized, subject to equations of motion
and joint limitations. As in Section 3.1, this problem is also
cast as a nonlinear optimization problem by discretizing the
time interval [0, Tc] into h small time intervals. Let̄q(j)
and ū(j) denote the values ofq andu on τ axis at time
j(Tc/h), j = 0, 1, . . . , h. Then the discrete approximations
to the first-order and the second-order derivatives are given
by midpoint discretization as (13) and (14), whereq is now
replaced with̄q. The cost functional is now a cost function

J2 = φ(x̄(h)) +

h−1
∑

j=0

ǫj(Tc/h)L(x̄(j), ū(j))(Tc/h), (30)

wherex̄(j) = (q̄T (j), ˙̄q(j)T )T . At each time step of simu-
lation, find

min
q̄(·),ū(·)

J2

(

x(t), q̄(·), ū(·)
)

(31)

subject to
x̄(0) = x(t) (32)

and (18), (22), and (23) wherex andu are respectively re-
placed withx̄ andū, N with h, T with Tc and withh and
Tc are specified. Only the first step of the resultant control
sequence,̄u(0), is applied as the actuated torques.

4 Simulation Results

We use the proposed gait optimization method to generate
the optimal gait at walking speedvd = 0.5 m/s. The pa-
rameters used by gait optimization are listed in Table 2. The
stick diagram of one walking cycle and the actuated torques
versus time of the optimal gait are shown in Fig. 3. This
optimal gait was used by the following simulations.
For RHC, Tc is chosen as10 ms, h as 1, Sf as
diag(1, 1, 1, 1, 1, 10−3, 10−3, 10−3, 10−3, 10−3). umax and
umin are the same as listed in Table 2, except for the range
of actuated ankle torqueu1, which is [−50, 50]. The use of
ankle torque provides additional robustness of gait control.

Tab. 2: Parameters used by gait optimization

wv 102
qf [0.32, 0.25, 0.09,−0.32,−0.25]T

wr 10−6
xmin [−0.8,−0.8,−0.8,−0.8, 0.0,

−5.0,−5.0,−5.0,−5.0,−5.0]T

wu 10−4
xmax [0.8, 0.0, 0.8, 0.8, 0.8,

5.0, 5.0, 5.0, 5.0, 5.0]T

ǫ e−1
umin −[0.0, 500, 500, 500, 500]T

N 50 umax [0.0, 500, 500, 500, 500]T
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Fig. 3: The optimal gait at 0.5 m/s walking speed. a) The
stick diagram. The configuration of the robot is drawn at
every 50 ms. b) The actuated torques versus time.

In the following simulations, pitch angleθpitch and pitch ve-
locity θ̇pitch of the left thigh are calculated by

θpitch =

{

q1 + q2 if the left leg is the stance leg
q1 + q2 + q3 + q4 otherwise

(33)
andθ̇pitch = d

dtθpitch. The horizontal position of the center
of pressure (CoP) with respect to the ankle joint of stance
leg,xcop, is calculated byxcop = −u1/fv

1 , wherefv
1 is the

vertical component force of the ground reaction forces (as
depicted in Fig. 1).

4.1 Response to a Perturbation With a Perfect Model

The proposed controller was evaluated under a perturbation,
which was a horizontal force (4000 Newtons) applied for
0.01 seconds at2.21 seconds or 40 Newton-seconds impulse
at the hip. The state of the robot was initialized on the opti-
mal gait. A perfect model was used, that is, the same physi-
cal parameters were used by gait optimization, RHC, and the
simulated robot. The stick diagram and the phase portrait of
the left thigh’s pitch motion are shown in Fig. 4. Conver-
gence to the optimal gait is obtained after the perturbation.
Since the proposed method regulates the internal state of the
robot instead of tracking the trajectories of the optimal gait,
the foot placement (as shown in Fig. 4(a)) and the walk-
ing speed (as shown in Fig. 5) are changed under pertur-
bations. The walking speed is close to the desired walking
speed (0.5 m/s) after the convergence. Also, as a result of
limiting the actuated ankle torque by RHC,xcop keeps in-
side the region,[−0.1, 0.1]. This means the stance foot will
rest on the ground and the robot will walk stably if the stance
foot can cover this region. After the convergence to the op-
timal gait,xcop tends to zero because of zero actuated ankle
torque of the optimal gait.
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Fig. 4: Response to 40 Newton-seconds perturbation with a
perfect model. a) The stick diagram. The configuration of
the robot is drawn at every 50 ms. b) Phase portrait of the
left thigh’s pitch motion. It traverses clockwise.
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Fig. 5: Response to 40 Newton-seconds perturbation with a
perfect model. The red lines show the time when the pertur-
bation happens. a) The horizontal position of the hip versus
time. b) The horizontal velocity of the hip versus time. c)
The horizontal position of CoP with respect to the ankle joint
of the stance leg versus time.

4.2 Response to a Perturbation With Modeling Errors

In practice, the robot’s parameters are not perfectly known.
We assume that we have some errors on the mass and the
inertia of the torso. The proposed controller was evaluated
under the same perturbation (40 Newton-seconds impulse at
the hip) as before but with imprecise model data, that is, the
physical parameters listed in Table 1 were used by gait opti-
mization and RHC, while50% more mass and inertia by the
simulated robot. The state of the robot was also initialized
on the optimal gait. As shown in Figs. 6 and 7, convergence
to the optimal gait is obtained. The walking speed is close
to the desired walking speed (0.5 m/s) after the convergence.
Because of the existence of modeling errors,xcop does not
tend to zero even after the convergence.

4.3 Starting Step Control

The robustness of the proposed controller was further
demonstrated by starting step control. The robot was ini-
tialized with a zero state or in a static up right posture. As
shown in Fig. 8, it starts to walk and then walks with the
optimal gait after applying the proposed controller without
any changes. It is not necessary to have a special control for
gait initialization as usual [4, 8]. This result shows the ro-
bustness of the proposed controller in that it can converge to
the optimal gait starting from the origin of the state space.
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Fig. 6: Response to 40 Newton-seconds perturbation with
modeling errors. a) The stick diagram. The configuration of
the robot is drawn at every 50 ms. b) Phase portrait of the
left thigh’s pitch motion. It traverses clockwise.
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Fig. 7: Response to 40 Newton-seconds perturbation with
modeling errors. The red lines show the time when the per-
turbation happens. a) The horizontal position of the hip ver-
sus time. b) The horizontal velocity of the hip versus time.
c) The horizontal position of CoP with respect to the ankle
joint of the stance leg versus time.

4.4 Comparison with a PD Servo Controller

We compared the proposed controller with a PD servo con-
troller, in which each joint has a stiff PD controller to track
the optimal gait. We use 1000 as the proportional gains and
10 as the derivative gains for all joints. The PD servo con-
troller falls down after a impulsive perturbation of lager than
17 Newton-seconds or with a mass/inertia error of the torso
larger then+20%. In contrast, the proposed controller is
able to handle an impulsive perturbation of up to 40 Newton-
seconds and a mass/inertia error of the torso up to+50%.
We measured the sum of the squared torques,

∑

uTuT ,
over 6 seconds starting in a state on the optimal gait. For
walking in the presence of an impulsive perturbation of17
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Fig. 8: Starting step control by the proposed method. a)
The stick diagram. The configuration of the robot is drawn
at every 50 ms. b) Phase portrait of the left thigh’s pitch
motion. It traverses clockwise.



Newton-seconds, the cost for the proposed controller was
9343.23, the corresponding cost for the PD servo controller
was 19360.6. For walking with a+20% mass/inertia error
of the torso, the cost for the former was 7638.78, compared
to 8313.02 for the later.

5 Conclusions and Future work

In this paper, we proposed an efficient control method for
planar biped walking. The combination of offline gait op-
timization and online optimization of RHC balances the re-
quirements of efficiency, control robustness, and real-time
computation. It shows that RHC’s robustness and ability
to handle constraints results in a large stable region of state
space around these optimal gaits. Since the proposed control
method regulates the internal state of the robot instead of
tracking the optimal gaits, it may change foot placement and
walking speed under perturbations, which results in more ro-
bust gait control. On a workstation with Intel(R) Xeon(TM)
3.20GHz dual-core CPU and 2G memory, it takes about 10
ms to solve the optimization problem in RHC without fur-
ther code optimization. Therefore, the proposed controller is
applicable to real-time applications.
In our future work, double-support phases will be addressed,
which may help to reduce impulsive forces and increase ro-
bustness and efficiency of gait control. If the endpoint cost
function of RHC returns the future cost, then RHC becomes
trajectory optimization with an infinite horizon. We are ex-
ploring methods to approximate the future cost. Further-
more, we would like to extend our method to a full 3D hu-
manoid robot model and implement this algorithm on real
robots.
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