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Robust Disturbance Rejection Control for Attitude Tracking of an Aircraft

Lu Wang and Jianbo Su

Abstract— This brief proposes a disturbance rejection control
strategy for attitude tracking of an aircraft with both internal
uncertainties and external disturbances. The proposed control
strategy consists of a robust disturbance observer (DOB) and
a nonlinear feedback controller. Specifically, a robust DOB is
proposed to compensate the uncertain rotational dynamics into
a nominal plant, based on which a nonlinear feedback controller
is implemented for desired tracking performance. We first divide
the practical rotational dynamics into the nominal part, external
disturbances, and equivalent internal disturbances. Then,
property of equivalent internal disturbances is explored for
stability analysis. A robust DOB is optimized based on H, theory
to guarantee disturbance rejection performance and robustness
against system uncertainties. A practical nonlinear feedback
controller is hence applied to stabilize the compensated system
based on backstepping approach. Experiments on a quadrotor
testbed show that the proposed robust DOB can suppress
the external disturbances and measurement noise, with the
robustness against system uncertainties.

Index Terms— Aircraft, attitude tracking, disturbance
observer (DOB), disturbance rejection control, robust stability.

I. INTRODUCTION

ESEARCH on aircraft control has been widely con-
cerned with its applications, such as aerial inspection,
satellite surveillance, geological survey, and rescue in
disasters. For an aircraft, attitude control performance is
essential in almost all these missions. Hence, development
of a high-performance attitude control is an important and
challenging work. Several approaches have been developed for
the attitude stabilization or tracking problem [1]-[5]. Generally
speaking, these control schemes are proposed with accurate
system model. The system uncertainties are not considered.
Attitude tracking performance is usually affected by
system uncertainties, such as unknown parameters of mass and
inertia, actuators’ uncertainties, and compound aerodynamic
disturbances. To resolve these problems, numerous approaches
have been proposed, such as sliding mode control [6], [7],
adaptive control [8], robust control [9], linear quadratic
regulation [10], nonlinear disturbance observer (DOB) [11],
neural network [12], and fuzzy system [13]. These schemes
can deal with the system uncertainties, as expected. However,
it is still inevitable to face chattering of sliding mode
control, convergence rate of weights in neural network and

Manuscript received May 29, 2014; revised October 11, 2014; accepted
December 27, 2014. Manuscript received in final form January 25, 2015. This
work was supported by the National Natural Science Foundation of China
under Grant 61221003. Recommended by Associate Editor L. Marconi.

The authors are with the Key Laboratory of System Control and
Information Processing, Department of Automation, Ministry of Education,
Shanghai Jiao Tong University, Shanghai 200240, China (e-mail:
wanglu1987xy @sjtu.edu.cn; jbsu@sjtu.edu.cn).

Digital Object Identifier 10.1109/TCST.2015.2398811

fuzzy system, and high gain of nonlinear DOB. Meanwhile,
analysis of the methods mentioned above are carried out in
time domain, which may be affected by the measurement noise
with high frequency from the sensors.

Based on the above descriptions, we employ a DOB to
compensate for the system uncertainties in attitude tracking
control. DOB-based control method was originally proposed
by Ohnishi [14] for linear single-input-single-output system,
whose effectiveness in disturbance rejections has been shown
in many applications [15]-[18]. DOB consists of a nominal
model and a low-pass filter named Q filter, which is critical
for system performance. Traditional DOB configuration in
aircraft is affected by its nonlinearity and coupling property.
A nonlinear control structure with DOB was proposed for
nonlinear servo system, whose input to state stability was
proven in [19]. However, a simple low-pass filter was adopted
as the Q filter, whose performance was largely limited by
its relative order and parameters. Meanwhile, as an important
issue of DOB, robust stability condition against system uncer-
tainties was not considered. A mixed sensitivity function with
Q filter was established in [20] and [21] based on disturbance
rejection and stability requirements, thus, standard H., method
was introduced to optimize the Q filter. However, this method
can only be applied in linear systems.

In this brief, the control scheme based on linear DOB
and nonlinear controller for a rotational rigid body system
with strong coupling properties is investigated. A disturbance
rejection control scheme is implemented to deal with
the system uncertainties. The system error model is first
established based on modified Rodrigues parameters (MRPs)
and the uncertainties of actuators are considered. The
rotational dynamics is divided into nominal part, external
disturbances, and equivalent internal disturbances. Hence,
property of internal uncertainties is explored, based on which
the robust stability constraint is given. Then, we consider the
robust stability, relative order, and mixed sensitivity require-
ments together to establish an optimization function, based
on which the state-space solution in Hy, control [22] is
introduced to optimize the Q filter. Consequently, the uncer-
tain dynamics can be compensated into a nominal plant, by
which a backstepping approach is applied for desired tracking
performance. Experiments are carried out on a quadrotor
aircraft to verify the robustness against internal uncertainties
as well as suppression of external disturbances of the directly
designed DOB.

The rest of this brief is organized as follows. In Section II,
the attitude control problem is presented to establish the
system error model based on MRPs, and the property of inter-
nal uncertainties is analyzed. In Section III, a robust DOB is
designed systematically based on H, theory, and a nonlinear
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feedback control law is addressed to acquire desired tracking
performance. Then, we analyze Lyapunov stability of the
closed-loop system. In Section IV, a quadrotor aircraft testbed
is introduced to verify the effectiveness of the proposed control
scheme, followed by the conclusion in Section V.

II. SYSTEM MODEL AND PROBLEM FORMULATION
A. System Model

There are three coordinate systems used in this brief,
geographic coordinates F,, body-fixed coordinates F;, and
orientated coordinates F,;. We choose MRPs to represent the
attitude. MRPs is a 3-D vector without restrictions, which
is defined as ¢ = rtan(a/4), where r and o represent the
unit vector of rotational axis and rotation angle of the body
frame, respectively. According to the definition of MRPs, its
kinematics is given as

6 =G0 (1)

where @ € R? denotes the angular velocity of the rigid body
and the matrix G (') is given as
-0

1(1-0"c T
G(O‘)—E(Th—l-[dx]—i-aa ) (2)

where I3 denotes the identity matrix with a dimension of
three by three, [ x] denotes the skew-symmetric matrix of &.
Concerning with the MRPs problem, please see [23] for further
details.

The aircraft is considered as a rigid body without
deformation, and the system model is described as

[d =G(0)w 3)
Jo=—-oxJo+ Fu
where u = [u; ur uz]? € R3 is the control input of the
rotational dynamics, which can be regarded as the control
surface or propeller speed of an aircraft. F' is a 3-D input
matrix, where Fu is the control torque, and J € R3%3 is a
symmetric square positive definite inertia matrix.

Assumption 1: Since matrix F' is determined by structure
and actuators of the aircraft, we assume that the aircraft is
fully actuated, whose number of actuators is the same as its
degrees-of-freedom. That is, the system model in (3) has an
invertible F.

B. Problem Formulation

We consider the attitude tracking problem of an aircraft
with the desired attitude [64 wg @;] in orientated frame F,
denoting MRPs, angular velocity, and angular acceleration,
respectively. The desired angular velocity @w; and desired
angular acceleration @, are all bounded signals.

The orthogonal attitude transition matrix
by R € SO(3), which is described as

41 -o70)
UxoTor @ T TaTeple
The relative MRPs and angular velocity variables from
body-fixed frame F, to the orientated frame F, are defined as
1

is denoted

R=1 — x]+ P @

6=0®0,;, @=w-Roy (5)
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where a;l is the inverse of o4, which is extracted as
o-;l = —04,and R = RR; is known as the error of attitude
transition matrix. The operator @ denotes the production of

MRPs as shown in (6) with two MRPs vectors of ¢ and &,
(1=lo21*e1+ (1= loi]*e2 —201 x a2
L+ |lo2l?lo 11> — 2670,

61d0or=

(6)

Lemma 1 [24]: 1f attitude variable pairs (¢, ®) and (6 4, ®4)
both satisfy the MRPs kinematics, then the relative attitude
variable pair also satisfies the MRPs kinematics.

From Lemma 1 and the definition of @, we obtain the
following rotational error model:

6 =G6)d
@ = J [—(@+ Rwg) x J(@+ Rwg) + Fu] (7
—(Rwg — [@x]Rwy).
Define the nominal inertia is Jy and inertia error as
AJ = J — Jyp. Meanwhile, the nominal value of F is given

as Fp, and its error is defined as AF = F — Fy. Then, we can
use the feedback linearization

u=o+ F(;l L(@ + Rawg)vec(Jo) + F(;1 Jo(Ré>g — [@x]Rwq)
(@)

to reduce the system dynamics to
Fyi'héd=v+d+f ©9)

where the definition of the operator L(-) and vec(-) satisfy
L(@ + Rwg)vec(Jy) = (@ + Rwy) x Jo(@ + Rwy), operator
vec(-) is a vector that contains all the components of the
symmetric square matrix.

The external disturbances d satisfy Assumption 2, f is the
internal uncertainties, and for 6 = (FFy) ™ (FoAJ — AF Jp),
we have

f=—[0@+ L@ + Rwg)vec(d) + 6(Ray—[@x]Rwq)]. (10)

Assumption 2: The external disturbances d are bounded
signals with ||d|| < d.

All the analysis in the rest is presented based on the above
rotational error model. From (4), we obtain R = I3 when
6 = 0. From the orthogonality of attitude matrix, R = I3
if and only if R = Ry. Then, due to the definition of @,
we obtain @ = @, while R = Iz and @ = 0. This implies
that stabilizing the error system in (7) is equivalent to the
objective of attitude tracking. Hence, the control objective
turns to design a controller for stabilization of equilibrium
point: 6 = 0, = 0, with existence of external disturbances
and system uncertainties.

C. Analysis of System Uncertainties

Consider the expression of the internal uncertainties f
in (10) and introduce the notation

(1)

Since ||R||, |lwg|l, and |l@g| are all bounded, from the
definition of ||f||, there exists a standard X function o(-)

f1=—L(@ + Rwg)vec(d) — (Rig — [@x]Rwy).



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

WANG AND SU: ROBUST DISTURBANCE REJECTION CONTROL OF AN AIRCRAFT 3

and a positive constant 7 such that || f] < a(||@|)+ #. From
the definition of L(-), we know that the first part of f is of
the second order for input @, which means K function a(-) is
of the second order.

By substituting (9) into (10), it follows that

f=(+0J FR) ' [— 6y Foo +d) + f1]

Since external disturbances d are bounded and by considering
the property of f, and feedback controller v, there exist
K functions a1(+), az2(:), a3(-) and a positive constant # such
that

12)

1£1l < ar(l6 1) + a2(ll@]) + as(Id]l) + 7. 13)

The previous property of system uncertainties can be applied
to obtain the Lyapunov stability. Consider the existing works
in the robust stability analysis of DOB-based control structure
in [15], [17], and [20], we can design the sensitivity function
of Q filter based on small gain theorem for robust stability.
Hence, the system dynamics is transformed into the form
with multiplicative uncertainty. The multiplicative uncertainty
A(s) is given as

A(s) = P, ()(P(s) — Pa(s))

where P(s) and P,(s) are the real and nominal models of the
rotational dynamics, respectively. By substituting the upper
bound of f(s) into (14), we can obtain the upper bound
of A(s) for robust stability.

Converting the description of f into frequency domain using
Laplace transform, we can obtain its upper bound from (10)

15)

(14)

f(s)=(=ds+ap)o+ 7

for the selected ap = supg|<q, (@(l@[)/[l@]). s is the
Laplace operator.

Consider that the input » consists of the state feedback of @,
which will in turn change the poles of the rotational dynamics.
Hence, the feedback controller should be considered to acquire
the nominal model P, (s). Since the calculation of P,(s) will
be affected by the designed control law, design procedures are
shown in Section IV.

III. CONTROLLER DESIGN BASED ON RoBUST DOB
A. Control Structure

The control system is divided into two parts, an inner loop
for the rotational dynamics and an outer loop for the whole
feedback system, respectively. In the inner loop, we apply
a DOB to eliminate the influence caused by the unknown
external disturbances and internal parameters perturbation.
The designed DOB should guarantee the robustness against
the internal uncertainties. Since the system uncertainties have
already been compensated, a nonlinear feedback controller is
presented to stabilize the nominal error model. The control
structure is shown in Fig. 1, where d is the estimated
disturbance of DOB.

For the error system dynamics expressed in (7),
a DOB is designed to compensate it into a nominal
plant. We consider the robust stability, relative order, and
mixed sensitivity design requirements together to establish an

System Error Model

S e I LTI e

]

Nonlinear ‘4
I

Controller -

feedback

Fig. 1. Control structure of the closed-loop system.

optimization function. Then, the optimization problem is
transformed into an H, control problem, and the state-space
solution in Hy control [22] can be employed directly to
achieve the optimal solution. Hence, the outer loop controller
is designed based on the nominal error model. To implement
the controller conveniently in the embedded system, the
practical nonlinear feedback technique is applied to design the
outer loop controller.

B. Robust DOB Design

From the above review, we know that the key point of
DOB is the design of Q filter and it must satisfy the following.
1) The relative order of Q(s) should be higher than or at
least equal to that of P,(s) to make sure Q(s)Pn_1 (s) is
proper.

2) Selection of Q filter should suppress the external
disturbances. If there is no prior information of the
external disturbances, we can regard them as the load
disturbances.

3) The robust stability of the closed-loop system should be
satisfied.

Consequently, the optimization function is established based

on the above requirements. The transfer function of the inner
loop is expressed as

@ = [Pu(s) + P(s)Q(s) — Pu(5) Q)]

X [P(s)Py(s)u + (1 — Q(s))P(s)Pu(s)d]. (16)
A set of Q(s) is defined as
mop.gi
Q= [F(s)lF(s) — M k=n— m} (17)
2 i i’

where k is the relative order mentioned above.

From (16), we notice that 1 — Q(s) should be as small as
possible to attenuate disturbance d, the optimization function
that reflects the disturbance rejection performance is given as

rQn(lsr; [Wi()(1 — Q(s)lloo (18)

where Wi(s) is the weighting function that reflects the prior
frequency property of the disturbances.

The designed Q filter should be robust against the system
uncertainties. From [15], [17], and [20], the inner loop is
robustly stable based on small gain theorem if

W2 () Q(s) oo < 1

where Wz_l(jw) < A7l (jw), Vw. Here, we use w to denote
the frequency signal.

19)
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From the above analysis, the disturbances rejection and
robust stability problems can be regarded as a tradeoff
between the sensitivity and complementary sensitivity func-
tions. Hence, the optimization problem is given as

max y
. Y Wi(s)(1 — Q(s))
S.t. Q(S)I?glz? 'H: W () O(s) :|HOO < 1. (20)
Q0(s)eRHoo

The standard Ho, method is proposed for this kind of
optimization problem in [14]. By defining the transfer function
of virtual loop as L(s) = Q(s)/(1 — Q(s)) = P(s)K (s), the
Q filter design problem turns to be a standard Hs, problem

max y
: Y Wi (I +P(5)K ()™
" ety Lrkeas kel <
@

where L(s) = P(s)K(s) and P(s), K(s) are the virtual
controlled objective and controller, respectively.

The standard state-space solution in Hy, control can be
applied to obtain the optimal solution. For a given virtual
controlled objective P(s), if we can acquire the optimal
solution of the virtual controller K (s), then the optimal Q filter
can be obtained as

o) _POKG)

= (22)
1+ P(s)K(s)

Remark 1: Since K(s) is proper and can eliminate all
the poles of P(s), L(s) has the same relative order as that
of P(s), thus, Q(s) € Q if P(s) € Q.

Remark 2: From the theory of Hs, optimal control problem,
the closed-loop system of virtual Hy  control
problem is internally stable, then Q(s) = (P(s)K(s)/1 +
P(s)K (s)) € RHoo, that is, all the poles of Q(s) are in the
open left half of the s-plane.

C. Backstepping-Based Nonlinear Control

With the estimated disturbance of the proposed DOB,
a backstepping-based nonlinear controller is designed as the
torque input for attitude tracking performance.

To employ the backstepping technique for controller design,
we first introduce Q

Q=0&+ks (23)

where ki is a strictly positive matrix.

Consider the following candidate Lyapunov function V; as:

1~ ~
Vi =2In(1 +676) + 5QT (Fy ' o). (24)

Notice that 67 G(6) = (1 +0676)/(4)a”, derivative of V; is

described as

Vi=—6"ke+6"Q+Q (0 +d+ f +kJ; F0GE)d)
(25

consequently, the control input » is proposed as

v =—(1+kik2)é — (ko + Fy ' Jok1G(@))d —d  (26)
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where kj is a strictly positive matrix and d is the estimated
disturbances of DOB.

Define the estimating error of the DOB system as
d=d+ f - d, then substituting (26) into (25) yields

Vi < —ZminkDIG 12 — Zmin R)IQN? + QU] (27)

Assume that the estimating error of DOB is the input of
the above system. Then, the unforced system is exponentially
stable at the equilibrium point. From (8), the control torque
of the attitude tracking problem is finally described as

u=—(+kik)é — (ko + Fy ' Jok1 G@))d> — d
+ Fy ' L@ + Rwg)vec(Jo) + Fy ' Jo(Rig — [@x1Rwy).
(28)

D. Stability of the Closed-loop System

Stability of the closed-loop system with both internal
uncertainties and external disturbances is analyzed based on
Lyapunov theorem.

Theorem 1: Given a rotational error system of an aircraft
in (7) for a desired attitude trajectory defined as [ 4 wq @q].
With the external disturbances d and internal uncertainties f
in (10), let the Q filer of DOB optimized by (20) and nonlinear
feedback controller defined by (28). Then, the MRPs error &,
the angular velocity error @, and the estimation error d of
DOB are locally uniformly ultimately bounded (UUB).

Proof: We first establish the state equation of estimation
error of DOB. From the control structure in Fig. 1, the
estimated disturbance is

d=—0(s) + 0(s)P ' (). (29)
Notice that Pn_l(s)ﬁ) =F, ljo(f), we obtain
d=—0@w+ Q6)Fy ' Jood = 0(s)d + f).  (30)

We regard (d + f) as input of the DOB-based system.
Simultaneously, d and d are regarded as the output of
DOB-based system. The state space of the inner loop based
on DOB is expressed as

z;:AZ—i:B(d‘i‘f)
d=Cz,d=-Cz+d+f)

where z is the state of the DOB structure.

Remark 3: The specific form of A, B, C, and z are
determined by the optimized Q filter. Here, we only know
that (A, B, C) is a minimal realization of the DOB-based
system. (A, B) is controllable, and (A4, C) is observable. Since
Q(s) € RHo, the matrix A is Hurwitz. That is, for any given
positive definite symmetric matrix N, there exists a positive
definite symmetric matrix M such that MA + ATM = —N.

By introducing a new Lyapunov function Vo, = kV| +
zT Mz, its derivative is given as

Va < — kdmin(k) 161> — kAmin (k2) |Q1% + k|1QI11|d ]|
—dmin(N)lIz|I> + 20 M I BIllizlI(d + I £ 1)
From the definition of @, we notice that (o, fl) is a linear

diffeomorphism of (6, @). Consequently, from the property of
system uncertainties in Section II, we can observe that for any

€19

(32)
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compact set, if the system states are in this compact set, then
there exist positive constants aj—as that satisfy

IfIl < aillé || + a2 llQIl + a3 |QI* + aslizll +as.  (33)
Substituting (33) into (32) yields
Vi < —ci1lé 1> — e2lQI1* — eslizll* + u (34)
where
kai  aiIM||B|
= kimin(k]) — = — ————
C1 mm( 1) 222 23
k(Amax(C) +aa)  kailo
cy) = [kimin(kz) — maleh) ) — ; — kaz
_alMIIBIl  (kd)*  (kas)®
A4 dpy 4po
= a3MIlIBI  «
— ka3 |QIl — linnn2
5
kA1 Qmax (C d\M||BID?
o= [zm(m kAa( maxz( )+as)  (dIMIIIBI)
U3
(asIIM|1|BI)?
- a4 ||M||||B|
M4

MBI @123 + azia+ aggs)}
W= {1+ pu2 4 uz+ pa

where A1—As and p|—u4 are the positive constants.

It is assumed that Qo > (u/c2)"/? is the upper bound
of |Q such that ¢» > 0. For Q@) < Qo, V is
strictly negative provided the following inequalities hold:
61 > (u/e)'/?, or IQI > (u/c2)'?, or llzll > (u/e3)'/2.
Then, the above three states are locally UUB and can converge
into a compact set. Notice that (&, Q) is a linear diffeomor-
phism of (6, ®). Hence, (6,®) can converge into a compact
set. From (31), it is easy to observe that the MRPs error, the
angular velocity error, and the estimation error of DOB are
locally UUB. (I

IV. EXPERIMENTAL RESULTS
A. Quadrotor Testbed

A quadrotor aircraft is applied to show the effectiveness of
the proposed control strategy. A quadrotor is a kind of aircraft
with the appearance of a dish. It consists of four independent
motor driving systems that are bound together on a rigid
criss-cross structure. The four rotors are located at the tips
of the rigid body, and the rotors alternate between rotating
clockwise and counterclockwise as you move around the
system. The rotational rates of the rotors are identical during
hovering. Conversely, changing the speeds of two propellers
that are opposite to each other produces pitch or roll motion.
Yaw motion results from the difference in the counter torque
between each pair of propellers, which is caused by changing
the speeds of two pairs of propellers conversely.

Define the control input as u = [wy wy cu,,,]T, then, the
rotational speeds of each propellers are

W] = or + Wy + Wy,
W3 = WT — W + Wy,

W2 = 0T + Op — WOy

(35)
W4 = OT — Op — Oy

where w7 is the nominal rotor speed required to hover.

TABLE I
PARAMETERS OF THE QUADROTOR AIRCRAFT

Parameter Value Error Unit

Cr 0.012 +0.003
Co 0.93 x 1073 | £0.2x 1073

p 1.184 Kg-m™3
A 0.0515 +0.002 m?

r 0.128 +0.001 m

l 0.25 +0.01 m
Jo 0.014 +0.002 Kg-m?
Jo 0.014 +0.002 Kg-m?2
Jy 0.024 +0.004 Kg-m?
wr 215 +5 rad/s

From the principle of the quadrotor aircraft, the control
torque is shown as

CTpArzl(w% - a)%)
CTpArzl(a)% - a)‘%)
CQpAr3(a)% + a)% - a)% - a)‘%)

where C7 and Cg are the coefficients of thrust and torque
from rotational speed, respectively. p is the density of air, r is
the propeller’s radius, A is the propeller’s disc area, and [ is the
rotor displacement from the quadrotor center of mass. Assume
that the value of u is smaller than that of wr, we finally obtain
the matrix F as

F = diag(4CTpAr21cuT, 4CTpAr21wT, 8CQpAr3cuT).

Here, diag(-) denotes the diagonal matrix and the related
parameters are shown in Table I, in which Jy4, Jy and J,,
are the correspondingly rotational inertia of three axes.

The control gains are chosen as k1 = 1.5 and k> = 9.0, and
according to the controller in (28), we obtain the rotational
dynamics as

[f = —[0® — L(@ + Rwy)vec(d) — 6(Riy — [@x]Rw,)]
[Fo ' Jos + (ko + Fy ' JokiG@6))]@ =o' +d + f
(37)

where o’ is the input of the rotational dynamics. The second
equation in (37) can be regarded as the nominal plant perturbed
by external disturbances d and internal uncertainties f. Notice
that G(6') approximates to a matrix I3/4 near the equilibrium
point, the transfer function P(s) from v’ to @ is

P(s) =[(Fy " Jo+0)s + (ka+ Fy " doki)] ™. (38)

The nonlinear terms in f are regarded as disturbance to be
compensated for.

Without any prior information of the external disturbances,
the weighting function for the disturbance rejection can be
selected as W (s) = 1/s2.

Since the quadrotor is axial symmetric, the corresponding
parameters of pitch and roll axes are same. Hence, we only
need to determine the weighting functions W>(s) for pitch
(roll) axis and yaw axis. Fig. 2 shows the frequency responses
of A(s) for different values of J. It is also required that the
designed Q filter has at least —20-dB attenuation against the
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Fig. 2. System uncertainty and its restriction on Q filter.
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Fig. 3. Quadrotor aircraft testbed.

measurement noise of gyroscope larger that 42 Hz. From the
above description, the weighting function is defined as
02s+1

1.42
Then, the virtual controller K (s) is optimized through (21)

by state-space solution in Hy, control. The Q filter is obtained
while y = 8.1

Wa(s) = (39)

0(s) = 27.1s +11.415 .

s*+7.1s +11.415

Our experimental platform is shown in Fig. 3. The mechan-
ical structure of the aircraft is based on the material of
carbon fiber. For the elaboration of the real-time flight control
board, it consists of a microprocessor, an inertial measurement
unit (IMU), and an electronic compass. The IMU,
InvenSense’s MPU6050, provides us with digital signal of
three-axis angular velocities and accelerations. The electronic
compass and Honeywell’s HMC5883 gives the three-axis
magnetic field of the rigid body. The microprocessor, STM32
ARM Cortex, is used to capture the signal data from the
sensors and to implement the control strategy. A nonlinear
complementary filter is implemented to estimate the attitude
information and gyro bias [26]. The quadrotor aircraft testbed

(40)
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Fig. 4. Attitude stabilization performance. (a) Attitude stabilization without
DOB. (b) Attitude stabilization with DOB.
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is shown in Fig. 3. Four brushless dc motors are used to
provide thrust and torque, with the power supported by a
lithium polymer battery.

The sample rate of the experimental system is 200 Hz.
Two experiments have been accomplished in this section. The
attitude stabilization case is presented in the first experiment.
Specifically, to test the disturbance rejection performance of
the proposed scheme, a mass of 135 g is hung from each arm
of the quadrotor structure, equivalent to a load disturbance
of 0.0388 N - m in pitch or roll axis. In the second experiment,
the attitude tracking problem is considered.

In this brief, the load disturbance is persistent for a few
seconds in the experiments. Actually, the practical disturbance
is usually persistent, for example, the persistent aerodynamic
disturbance, mismatched center of gravity, and mismatched
load. Hence, the load disturbance is introduced to validate the
disturbance rejection ability, and robustness of the designed
controller and DOB.

B. Attitude Stabilization

The attitude stabilization effects with and without DOB
are compared in Fig. 4. The experimental results show that
the controller can stabilize the attitude errors within 1 s.
At about 6 and 17 s, the load disturbance mentioned above
is hung on the pitch and roll axes, respectively. The designed
controller cannot totally eliminate this disturbance without
DOB. The MRP error remains until the external disturbance
is removed.

Then, with the proposed DOB, we perturbed the load dis-
turbance on quadrotor for a few seconds, and then removed it.
This procedure is repeated for four times on each tip of
the quadrotor. We notice that with the action of DOB,
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Fig. 5. Tracking effect of MRPs without DOB. (a) Tracking effect of 1.  Fig. 6. Tracking effect of MRPs with DOB. (a) Tracking effect of oy.

(b) Tracking effect of g5. (c) Tracking effect of o3.

the attitude error can converge with the existence of external
disturbances. From the experimental results, the external dis-
turbances will bring the system with MRPs error of about 0.02.
However, the designed DOB can estimate the disturbance
quickly, with response time less than 2 s.

C. Attitude Tracking

The experiment of attitude tracking is accomplished, while
the desired attitude is expressed as follows:

bia /T
641 = 0.03 cos (—z), o2 = 0.03 sin (—t) (41)

15 15

and oy3 retains 0. wy and @, are acquired from the kinematics
of MRPs as

[md =Gl oa)oa

g =G o641 — G(64,6)04) “2)

where G(o 4,6 ) is the time derivative of G(a ).

From Fig. 5, we find that although there is no external
disturbance, the internal uncertainties also lead to the existence
of tracking error. This can be easily shown in (9) and (10) that

(b) Tracking effect of 0. (c) Tracking effect of o3.
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Fig. 7. Tracking error of the proposed scheme.

even if there are no external disturbances, the existing internal
uncertainties will also bring the system with an equivalent
disturbance f. At 75 and 90 s, external disturbances are
exerted on the quadrotor. In Fig. 6, we find that with the action
of DOB, the tracking error caused by internal uncertainties can
be suppressed successfully. From the enlarged view of Fig. 6,
the convergence speed of DOB is less than 2 s. The attitude
errors are expressed in Fig. 7 and the comparison of the
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TABLE II
COMPARISON OF CONTROL PERFORMANCE (RMS ERROR)

o1 o2 o3
Without DOB | 7.1 x 1073 | 7.7x 1073 | 8.8 x 10~3
With DOB 79x10~% | 71 x107* | 29x 104

attitude tracking performance is shown in Table II. The control
accuracy is much higher with the proposed DOB. Meanwhile,
from the enlarged view of Fig. 7, the tracking error of both
pitch and roll axes are also sine and cosine signals with the
same period as desired attitude. This is because DOB cannot
suppress the time-varying component of equivalent disturbance
completely. Since there exists property of coupling among the
3 DOF of the attitude, when we exert external disturbances on
the axes of pitch or roll, it will in turn affect the other 2 DOF.
However, the proposed DOB can also suppress the influence
caused by coupling property. The experimental results show
that the proposed scheme possesses strong disturbance rejec-
tion performance against external disturbances as well as good
tracking performance.

V. CONCLUSION

This brief proposes a disturbance rejection control strategy
for the attitude tracking of an aircraft. We first establish the
attitude tracking error model based on MRPs with actua-
tors’ uncertainties. A disturbance rejection control scheme is
proposed with a well-designed robust DOB and a nonlinear
feedback controller. The experimental results validate that
the designed control scheme can stabilize the system quickly
and accurately. The directly designed DOB can eliminate the
external disturbances effectively under the condition of guaran-
teeing the robust stability. Meanwhile, the quick convergence
of DOB makes it practical in systems with requirements of
rapidity.
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