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Abstract— This paper addresses the basic behavior acquisi-
tion of the robot head based on the multisensor integration. A
robot head generally has several degrees of freedom(D.O.F.)
of motions as well as different kinds of sensors. The head
motion is planned based on all sensors’ feedback. We take
advantage of the Jacobian matrix to describe the differential
relations between the sensor feedback and the motor motions.
Hence, the relation between two sensors could be formulated
by the two respective Jacobian matrices of both sensors to
motors. Consequently, multisensor integration can be employed
for better performance of the robot head. Experiments of basic
behavior acquisition like gazing and head posture control are
conducted. Performances of both basic behaviors of the robot
head before and after multisensor integration are compared,
which demonstrate that the proposed multisensor integration
way improves the performance of control, robustness against
some sensor’s failure, and reduces the overall computation.

I. INTRODUCTION

Cognitive processes at high-level abstractions rely on a
hierarchy of lower-level behaviors. Low-level autonomous
behaviors can be constructed from basic sensorimotor be-
haviors [1], [2]. A basic sensorimotor behavior is a reflex,
which is a direct motor response to sensory feedback. Basic
behavior designs are essential to a behavior based robot. In
order to acquire basic behaviors, it is most often to assume
the way that an autonomous robot perceives the world and
take advantage of the prior knowledge of the sensorimotor
maps. These assumptions generally reduce the chances of
generating new behaviors from the dynamic interaction of the
robot with the environment. If basic behaviors are determined
a priori, it is most probable that the behavior control might
be inefficient at best, or completely wrong at worst. An
alternative to overcome these limitations is to acquire the
basic behaviors by the robot itself.

The control mechanisms for the stabilizing gaze have long
been studied in biological systems [3], [4]. Stabilizing gaze is
to maintain fixation on a possibly moving visual target from a
possibly moving gaze platform. It is important because it has
advantages of high-resolution, mathematical simplification,
active visual sensing and so on [5]. For a humanoid robot,
the posture control of its head is also very important. Biped
locomotion is inherently unstable, so the posture of its head
must be under control in order to keep the whole body
stable. On the other hand, the posture control of its head
is also necessary during human-robot interaction. Humans
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use many kinds of body language, such as nodding, shaking
one’s head and so on. All of these need the posture control of
the head. For a human being, his vestibular system senses the
position of the head and the body in space, which is critical
to the control of his posture. The information provided by
the vestibular system is fused with vision at a very early
stage. It also plays a key role in the stabilizing gaze. On the
other hand, visual cues aid the spatial orientation and body
equilibrium. So the visual system also plays an important role
on posture control [6]. Multisensor integration is to integrate
different kinds of sensors in order to complement to each
other [7], [8]. The stabilizing gaze and the posture control
skills are so reactive and pervasive that require a significant
amount of multisensor integration [9].

Some attempts have been made to acquire sensorimotor
maps in order to generate basic sensorimotor behaviors of a
robot head. Marjanovié et al. [10] proposed a system using
self-supervised learning method to get the map between
eye, head, and arm end-point. The system can then perform
fundamental visuomotor coordination task, such as gazing
and pointing. In [11], a sensorimotor map was learned
by a Growing Neural Gas (GNG) network. The result of
the learning is the construction of a motor map which
codes adaptively compensatory stabilization reflexes. In [12],
instead of learning a direct mapping from the image sensing
to a desired action, the system first learned a forward model,
then performed gaze control. When these methods are used in
a real robot, there seems to be a limitation for computational
complexity and learning time. In robotics, the stabilizing
gaze control techniques dealing with multisensor integration
have received little attention so far. Shibata et al. [13] deal
with the problem of visuo-inertial integration by reproducing
an accurate computational model of the biological reflexes
system. In [14], the proposed binocular system is controlled
by integrating visual and inertial information. The integration
of these informations is implemented by considering the
geometry of the binocular system and the knowledge of
actual gaze configuration (the gaze distance and direction).
In [11], motion cues are integrated with visual cues by means
of a neural controller. There is work on posture control of
articulated mobile robots, but little on the integration of
the posture control with visual information. In this paper,
we propose a new approach to acquire basic behaviors
based on multisensor integration. It is realized that the
differential relation between the sensor feedback and the
motor motions can be linearly described for such a servo
control system. Hence two sensors can be related by their
differential relations to motors. In the field of image-based



visual servoing, image Jacobian model is used to linearly
describe the differential relation between the visual sensory
feedback and the robot motion. It is widely used and has been
the mostly investigated approaches. We take advantage of the
Jacobian matrix to describe the differential relations between
the sensor feedback and the motor motions. The Jacobian
matrix is then used to generate basic behaviors, such as
stabilizing gaze and posture control, from the corresponding
sensor. Furthermore, the relation between two sensors could
be described by the two Jacobian matrices of both sensors
to motors. Consequently, multisensor integration can be
realized for better performance of the robot head. In order
to realize the flexibility of the proposed model itself, a
system identification method is used to make the system free
from calibration and a multi-agent-based implementation is
proposed.

The rest of the paper is organized as follows. In section
II, we propose our model and the multi-agent-based imple-
mentation of the control system. Section III gives a detailed
description of our robot head. Experiments are provided in
section IV to demonstrate the validity and performance of the
proposed model. Conclusions and future work are provided
in Section V.

II. MODEL
A. Acquisition of Basic Behaviors

Suppose the system has n motors, the current motor
states, namely their rotation angles, are denoted by x =
[#1, 22, ,2,]T. The control input u.(¢) to the system at
time ¢ is the desired increment of x. Suppose sensor M has [
output, their current states and desired states are denoted by
yM = [yfwvyé\/[a e 7yl1W]T and rM = [T{Wa Téwa e a/rl]w]T
respectively. The control output based on sensor M’s feed-
back is denoted by u™ . The problem here is to determine the
control input u,. based on the current states and the desired
states of all sensors.

We suppose that the mapping between sensors and motors
is continuous, differentiable, and time-invariant. To simplify
the notation in the following manipulations, the superscript or
subscript of yM X dyM f M oM and Jy, will be suppressed.
So the correspondence between the current states of sensor
M and the current motor states is

yi = fi(x) i€ [1,1]. (D

Thus the relation of differential is

[}

dy; =aldx i€[l,l], )
v.vhere a; = [3;’1 , 352 e, gg}T The simultaneous equa-
tions are
y = f(x), (3
and
dy = Jdx, 4)
where y = [yh Yz, 7yl]T and J = [%} =
[a,aq,---,a;]T. J is a Jacobian matrix which relates the

sensor feedback with the motor motions. We will propose

to estimate the Jacobian matrix based on an on-line system
identification method.

In order to generate basic behaviors, resolved-rate motion
control [15] is used. Like the earliest approaches to image-
based visual servoing control, a simple proportional control
law is given by

u=KJ*(r—-Yy), 5)

where K is the constant gain matrix and J* is the pseudo-
inverse matrix of J. There is one control output based on one
sensor feedback. If there are multiple sensors, there will be
multiple control outputs and it will be necessary to integrate
all these control outputs into one control input to the system.
We use the most recently computed control output based on
any sensor feedback as the control input to the system. Hence
we get the control input to the system,

u.(t) = Merge(u',u?,...), (6)

where u’ denotes the control output based on sensor i and
function Merge(-) returns the most recently computed u’.

B. Jacobian Matrix Online Estimation

The recursive least-squares (RLS) estimation is widely
used for system identification. RLS can be interpreted as
a Kalman filter for process

0(k+1)=06(k) (7)
v(k) = @ (k)" 0(k) + v (k), )
where 0(k) is the state to be estimated, ¢ (k) is measure-

ment matrix, v(k) is measurement, and v(k) is measurement
noise. Let

9(/{3) = [a{7aga"']T 9
v(k) =y(k) —y(k—-1) (10)
Ax(k) = x(k) —x(k—1) (11)
Ax(k) 0
p(k) = , (12)
0 Ax(k)

where x is the current motor states, y is the sensor reading,
and a! is the ith row element of the Jacobian matrix .J. Then
we can use the RLS algorithm to estimate J. By the RLS,
the estimation could be

Kk+1)=Pk)ok+1)I+ T (k+1)P(k)o(k +1))7*

(13)
O(k+1) = 0(k) + K(E)[o(k +1) — T (k + 1)6(k)]

(14)
Pk+1)= (I - K(k+1)p"(k+1))P(k). (15)

In [16], such an image Jacobian matrix estimator has been
proved to be an effective method for online estimation of it.



C. Multisensor Integration

For sensor M and sensor N (M # N), according to (4),
we have

dyM = ij[dX (16)

dy" = Jydx. (17)
Hence

dy™ = Ty Jydy™, (18)

where J}; is the pseudo-inverse matrix of Jy. Then we have

FMIN (1) = yM(RTM) + /
k-TI\/I

=y (RTY) + T ISy () =y (KT,
(19)

t
dyM

where § IV (¢) denotes the estimation of sensor M’s current
states with the help of sensor N’s and T is the sample
period of y™. Equation (19) illustrates that one sensor’s
current states can be estimated with the help of another’s.
Combining all estimations and sensor M’s reading, we can
get the estimation of sensor M’s current states,

yM(t) = Merge(y™ (kT™M), ™M1 (), 5M2(1),...), (20)

where Merge(-) returns the most recent sensor reading
yM (kT™) or the most recent estimation §*!* with the help
of sensor ¢. This kind of integration has many advantages.
First, it can reduce the overall computational complexity for a
given task. Suppose sensor M is computationally intensive,
it can save many computational resources to estimate the
current states of sensor M with the help of computationally
less intensive sensors. Second, the system could be more
robust against failure. When some sensor fails, its current
states can still be estimated from the others’. Third, $ has
a higher sample rate than y. This can improve the control
performance of the system in most cases.

D. Implementation of the Model

In order to realize the flexibility of the model itself,
we propose the multi-agent-based implementation of the
model. Agents are independent function modules. Different
kinds of sensors are put into separated agents. One agent’s
current states, desired states, and control output are its
sensors’ current output, desired output, and control output,
respectively. The implementation of an agent is illustrated
by Fig. 1. The inputs to an agent are its desired states,
the current motor states, the current states and the Jacobian
matrices of the other agents. The current states of an agent
are read from its sensor output and the current motor states
are read from the motion control board. The output of an
agent is its current states, its Jacobian matrix, and its control
output. The Jacobian matrix is estimated each time when
the corresponding agent’s current states change. Multisensor
integration is performed when the states of any agent change.

The final multi-agent-based implementation of the control
system is shown in Fig. 2. Each agent is fully connected with
the others. Each agent sends and receives additional data if
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Fig. 2. The multi-agent-based implementation of the control system

necessary. For a given task, it is first mapped to the desired
states of some agents and then accomplished by all agents.
If one agent’s desired states are not explicitly defined, they
are always assigned to its current states.

IIT. ROBOT HEAD

This section gives a brief specification of our robot head
shown in Fig. 3.

The artificial vestibular system of the robot head is sim-
plified and is assembled with a low cost 2-axis tilt sensor
provided by Zhichuan Tech Co.,Ltd. It is fixed on the top of
the robot head and its two axes are tightly coupled with the
head’s motion (see Fig. 3(b)).

As for the visual system, there are two color CCD cameras
with PAL TV output. Video signals are grabbed and then
processed by a workstation with a Pentium D 2.8G CPU.

These two sensory systems are integrated within a binocu-
lar architecture (see Fig. 3(b)). Two stepper motors are used
to drive the pan axis and the tilt axis. We have focused our
efforts on the design and the construction of the head so as
to minimize the nonlinearities by minimizing head structure
parameters, h and a (see Fig. 3(d)).

IV. EXPERIMENTS

Experiments are run to check the validity of the proposed
model and the performance of the proposed control scheme.
We use three kinds of sensors to implement three agents,
namely the attention detecting agent, the retinal slip agent,
and the vestibular agent. The current states and the desired
states of the attention detecting agent are denoted by y, and
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r,, respectively. They are the current and desired position
of the attention point in current image. In experiments we
choose the center of a cartoon human face as the attention
point. The cartoon human face is detected by a boosted
cascade of simple features method. This method is initially
proposed by Paul Viola [17] and improved by Rainer Lien-
hart [18]. It is performed every 500 ms by the workstation.
Generally, retinal slip can denote both a position error and
the velocity of an image on the retina. We explicitly use it as
a position error. In our experiments 10 feature points with big
eigenvalues are selected in the 50 x 50 image whose center
is the most recently detected attention point. Then they are
tracked based on the method of sparse iterative version of
Lucas-Kanade optical flow in pyramids [19]. The retinal slip
is the mean position error of all feature points. The current
states and the desired states of the retinal slip agent are
denoted by y, and r,, respectively. The calculation of the
retinal slip is performed every 50 ms by the workstation. The
vestibular agent’s current states are the tilt sensor’s output
which is read every 33 ms. Its current states and desired
states are denoted by y, and r,, respectively.

Denote the head movement by H (t), the involuntary ego-
motion of the head by I(t), the movement of the attention
point by O(t), then

Yo = fa(O(1), H(1)) @h
yr = fr(O(t), H(1)) (22)
Yo = fo(H(t)) (23)
H(t) =x(t) + I(t) (24)

The Jacobian matrices of the attention detecting agent, the
retinal slip agent and the vestibular agent can be expressed
as J, = 0fa/0x%, J, = 0f./0x, and J, = Jf,/0x, respec-
tively. Every Jacobian matrix is assigned to zero initially,
estimated online in the background, and assigned to the
estimated value until its priori estimate error covariance P (k)
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Fig. 4. Head voluntary movement and Jacobian on-line estimation. In the
above figure, y, and y, are both in pixel. y, is in degree and z in step.

is small enough. Involuntary ego-motion I(¢) will cause
measurement noise in equation (8) and should be minimized
or avoided during Jacobian Matrix estimation.

In the following experiments, the head is fixed on the
top of the test platform (see Fig. 3(c)) which generates
the involuntary ego-motion. The test platform generates tilt
rotation along the test axis as shown in Fig. 3(d). The
attention point is static. Only the left camera is used and the
image acquired has 320 x 240 pixels. Every agent’s constant
gain matrix K in (5) is assigned to 2 x 2 diagonal matrix
with all diagonal elements 0.1. Without loss of generality,
only tilt rotation movement of the head is considered for
simplicity hereafter.

A. Jacobian Matrix Estimation

In the first experiment, the test platform is static and
the head moves voluntarily. The voluntary movement is
generated randomly with the highest frequency less than 1.5
Hz and the amplitude less than 150 steps as shown in Fig.
4(a). During the voluntary movement, the Jacobian matrix in
each agent is estimated online. The initial condition, P(0),
in each agent is an identity matrix. After less than 100
iterations, all priori estimate error covariances become very
small. For example, in the attention detecting agent, P(k) is
less than 0.001 and J, is nearly invariable after 50 iterations
as shown in Fig. 4(b).
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B. Acquisition of Stabilizing Gaze and Head Posture Control

In the second experiment, the test platform generates the
head involuntary ego-motion as shown in Fig. 5 and the
gaze control errors’ standard deviations before and after
multisensor integration are compared. Let r, = 120, r, = ¥,
and r, = y,-. Before multisensor integration, the gaze control
errors’ standard deviation is about 8.526 pixels as shown in
Fig. 6. After the attention detecting agent is integrated with
the retinal slip agent and the vestibular agent, it drops to
3.147 pixels as shown in Fig. 7.

In the third experiment, the test platform generates the
same head involuntary ego-motion as in the second experi-
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Fig. 9. Posture control after multisensor integration

ment. The posture control errors’ standard deviations before
and after multisensor integration are compared. Let r, = y,,
ry = 0, and r, = y,. Before multisensor integration,
the head posture control errors’ standard deviation is about
0.318 degrees as shown in Fig.8. After the vestibular agent
is integrated with the retinal slip agent and the attention
detecting agent, it drops to 0.210 degrees as shown in Fig.9.

The second and the third experiments show that the
proposed model with the appropriate desired states assign-
ments can generate basic behaviors like stabilizing gaze and
head posture control. They also demonstrate that multisensor
integration improves the performance of stabilizing gaze
control and head posture control.

C. More Benefits of Multisensor Integration

In the last experiment, we will further explore the benefits
of multisensor integration to robustness against some sensor’s
failure and computational simplification. The attention point
detecting is fragile to luminance change and image distortion.
The attention detecting agent may fail to detect the attention
point occasionally as we have seen during our experiments.
In this experiment, we use a piece of white paper to cover
a small part of the cartoon face occasionally. It will make
the attention detecting agent fail to detect the attention point
more frequently. The gaze control errors are compared before
and after integration. Fig. 10 and 11 show that the gaze
control errors are reduced by the integration with the other
two agents. When the attention detecting agent fails to detect
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the attention point, the position of the attention point can still
be estimated from the current states of the retinal slip agent
and the vestibular agent. So in spite of the attention detecting
agent’s failure, the gaze control errors are still relatively
small after multisensor integration. This means the proposed
multisensor integration way can improve the robustness
against some sensor’s failure. Because the attention detecting
agent is computationally more intensive than the others, it
can simplify the computation by deliberately reducing the
attention detecting frequency but still keep relatively small
gaze control errors by the proposed multisensor integration
method.

V. CONCLUSIONS AND FUTURE WORK

Our research goal is to investigate a mechanism to acquire
basic behaviors and multisensor integration for a more com-
plex humanoid robot. This paper takes a first step towards
this goal by exploring stabilizing gaze control and head pos-
ture control. We propose the multi-agent-based implemen-
tation of the control system. We demonstrate that Jacobian
matrices can be used to describe the sensorimotor correlation
and generate basic sensorimotor behaviors. Jacobian matrix
can also be used to relate different sensors’ information and
then realize multisensor integration. A system identification
method, RLS, is used to estimate Jacobian matrix online.
Online estimation makes the system free from advance

calibration between the sensors and the motors and makes
the system robust against some sensor’s and motor’s failures.
Multisensor integration improves the control performance in
stabilizing gaze control and head posture control. It can
improve the robustness against some sensor’s failure and
reduce the overall computation for a given task.

Like in the conventional image Jacobian matrix approach,
the convergence and stability of the proposed method is a
problem and under investigation.
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