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This paper reviews a variety of ways to use trajectory optimization to accelerate dynamic program-

ming. Dynamic programming provides a way to design globally optimal control laws for nonlinear

systems. However, the curse of dimensionality, the exponential dependence of space and computation

resources needed on the dimensionality of the state and control, limits the application of dynamic

programming in practice. We explore trajectory-based dynamic programming, which combines many

local optimizations to accelerate the global optimization of dynamic programming.

What is Dynamic Programming? Dynamic programming provides a way to find globally optimal

control laws (policies), u= u(x), which give the appropriate action u for any state x [1, 2]. Dynamic
programming takes as input a one step cost (a.k.a. “reward” or “loss”) function and the dynamics

of the problem to be optimized. This paper focuses on offline planning of nonlinear control laws

for control problems with continuous states and actions, deterministic time invariant discrete time

dynamics xk+1 = f(xk,uk), and a time invariant one step cost function L(x,u), so we use discrete time
dynamic programming. We are focusing on steady state policies and thus an infinite time horizon.

One approach to dynamic programming is to approximate the value function V (x) (the optimal
total future cost from each state V (x) = minuk∑

∞
k=0L(xk,uk)), by repeatedly solving the Bellman

equation V (x) = minu(L(x,u) +V (f(x,u))) at sampled states x j until the value function estimates
have converged. Typically the value function and control law are represented on a regular grid. Some

type of interpolation is used to approximate these functions within each grid cell. If each dimension of

the state and action is represented with a resolution R, and the dimensionality of the state is dx and that

of the action is du, the computational cost of the conventional approach is proportional to R
dx
×Rdu

and the memory cost is proportional to Rdx . This is known as the Curse of Dimensionality [1].

An example problem: We use one link pendulum swingup as an example problem to provide

the reader with a visualizable example of a nonlinear control law and corresponding value function.

In one link pendulum swingup a motor at the base of the pendulum swings a rigid arm from the

downward stable equilibrium to the upright unstable equilibrium and balances the arm there (Fig. 1).

What makes this challenging is that a one step cost function penalizes the amount of torque used

and the deviation of the current position from the goal. The controller must try to minimize the total

cost of the trajectory. The one step cost function for this example is a weighted sum of the squared

position errors (θ: difference between current angle and the goal angle) and the squared torques τ:

L(x,u) = 0.1θ2+ τ2 where 0.1 weights the position error relative to the torque penalty. There are no

costs associated with the joint velocity. The uniform density link has a mass of 1kg, length of 1m,

and width of 0.1m. Because the dynamics and cost function are time invariant, there is a steady state

control law and value function (Fig. 2).

Representing trajectories explicitly to achieve representational sparseness: A technique to

accelerate dynamic programming is to optimize more than one step at a time. Larson proposed modi-

fying the Bellman equation to allow multiple time steps and multiple evaluations of the one step cost
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Figure 1: Configurations from the simulated one link pendulum swingup optimal trajectory every half

second and at the end of the trajectory.
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Figure 2: The value function and policy for a one link pendulum swingup. The optimal trajectory is

shown as a yellow line in the value function plot, and as a black line with a yellow border in the policy

plot. The value function is cut off above 20 so we can see the details of the part of the value function

that determines the optimal trajectory. The goal is the state (0,0).

and dynamics before evaluating the value function on the right hand side [3]:

V (x0) = min
u0,N−1

((
N−1

∑
0

L(xi,ui))+V (xN)) (1)

Larson’s goal was to ensure that the right hand side of the Bellman equation did not depend on the

value being updated by ensuring that the trajectory ended far enough away from its start in his State

Increment Dynamic Programming. We have extended this idea by running trajectories a variety of

distances including all the way to the goal. To help show that representing trajectories explicitly

allows greater sparseness in dynamic programming, we will show its effect on the one link swingup

task. Fig. 3-top-left shows Larson’s State Increment Dynamic Programming procedure on a 10x10 grid

applied to this problem. In Larson’s approach trajectories are run until they exit a 2x2 volume and the

start value has no effect on the end value when multi-linear interpolation is used on the grid of values.

Fig. 3-top-right shows a set of optimized trajectories that run all the way to the goal from a similar

grid. The flow from state to state is clearly indicated. When the resolution is greatly reduced, the State

Increment Dynamic Programming approach fails (Fig. 3-bottom-left), while the full trajectory-based

approach is more robust to the sparse representation (Fig. 3-bottom-right) and still generates globally

optimal trajectories. This work raises the question: “What should N be?” Larson used a distance

threshold. We used reaching the goal as a threshold. A time threshold could also be used. What

distance or time threshold value should be used? Should it be the same throughout the space? Another

question is how to efficiently optimize the sequence of commands or actions in Eq. 1. We use local

trajectory optimization to find an optimal sequence of commands.

1 Trajectory-based Dynamic Programming

Our approach modifies (and complements) existing approximate dynamic programming approaches

in a numbers of ways: 1) We approximate the value function and policy using many local models
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Figure 3: Right: Different approaches to computing and representing the value function for one link swingup.

On the left is the State Increment Dynamic Programming Approach of Larson. On the right trajectories are run

all the way to the goal.
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Figure 4: Left: Example of a local approximation of a 1D value function using three quadratic models.

Right: Random states (dots) used to plan one link swingup, superimposed on a contour map of the

value function. Optimized trajectories (black lines) are shown starting from the random states.

(quadratic for the value function, linear for the policy) as shown in Fig. 4-Left. These local models,

located at sampled states, help our function approximators handle sparsely sampled states. A nearest

neighbor approach is used to determine which local model should be used to predict the value and

policy for a particular state. 2) We use trajectory segments rather than single time steps to perform

Bellman updates (black lines in Fig. 4-Right). 3) After using either the approximated policy or value

function to initialize the trajectory segment, we use trajectory optimization to directly optimize the

sequence of commands u0,N−1 and the corresponding states x1,N . 4) Local models of the value function

and policy are created as a byproduct of our trajectory optimization process. 5) Local models exchange

information to ensure the Bellman equation is satisfied everywhere and the value function and policy

are globally optimal. 6) We also use trajectory optimization on each query to refine the predicted

values and actions. 7) We are exploring using adaptive grids. Fig. 4-Right shows a randomly generated

set of 2D states superimposed on a contour plot of the value function for one link swingup, and the

optimized trajectories used to generate 2D locally quadratic value function models.

Local models of the value function and policy: We need to represent value functions and policies

sparsely. We use a hybrid tabular and parametric approach: parametric local models of the value

function and policy are represented at sampled locations. This representation is similar to using many

Taylor series approximations of a function at different points. At each sampled state xp the local
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quadratic model for the value function is:

V p(x) =V
p
0 +Vpx x̂+

1

2
x̂TVpxxx̂ (2)

where x̂= x−xp is the vector from the sampled state xp to the query x, V
p
0 is the constant term, V

p
x is

the first derivative with respect to state at xp, and V
p
xx is the second spatial derivative at x

p. The local

linear model for the policy is:

up(x) = u
p
0 −K

px̂ (3)

where u
p
0 is the constant term, and K

p is the first derivative of the local policy with respect to state

at xp and also the gain matrix for a local linear controller. V0, Vx, Vxx, and K are stored with each

sampled state.

Creating the local models: These local models are created using Differential Dynamic Program-

ming (DDP) [4, 5, 6, 7]. This local trajectory optimization process is similar to linear quadratic

regulator design in that a value function and policy is produced. In DDP, value function and policy

models are produced at each point along a trajectory. Suppose at a time step i we have 1) a local

second order Taylor series approximation of the optimal value function: V i(x) =V i0+V
i
xx̂+

1
2
x̂TVixxx̂

where x̂ = x− xi. 2) a local second order Taylor series approximation of the robot dynamics (fix and
fiu correspond to A and B of the linear plant model used in linear quadratic regulator (LQR) design):

fi(x,u) = fi0+ f
i
xx̂+ fiuû+ 1

2
x̂Tfixxx̂+ x̂Tfixuû+ 1

2
ûTfiuuû where û = u− ui, and 3) a local second or-

der Taylor series approximation of the one step cost, which is often known analytically for human

specified criteria (Lxx and Luu correspond to Q and R of LQR design): L
i(x,u) = Li0+L

i
xx̂+L

i
uû+

1
2
x̂TLixxx̂+ x̂

TLixuû+ 1
2
ûTLiuuû

Given a trajectory, one can integrate the value function and its first and second spatial derivatives

backwards in time to compute an improved value function and policy. We utilize the “Q function”

notation from reinforcement learning: Q(x,u) = L(x,u)+V (f(x,u)). The backward sweep takes the
following form (in discrete time):

Qix = L
i
x+V

i
xf
i
x; Q

i
u = Liu+V

i
xf
i
u (4)

Qixx = L
i
xx+V

i
xf
i
xx+(fix)

TVixxf
i
x (5)

Qiux = L
i
ux+V

i
xf
i
ux+(fiu)

TVixxf
i
x (6)

Qiuu = Liuu+V
i
xf
i
uu+(fiu)

TVixxf
i
u (7)

∆ui = (Qiuu)
−1Qiu; Ki = (Qiuu)

−1Qiux (8)

Vi−1x =Qix−Q
i
uK
i; Vi−1xx =Qixx−Q

i
xuK

i (9)

where subscripts indicate derivatives and superscripts indicate the trajectory index. After the backward

sweep, forward integration can be used to update the trajectory itself: uinew = ui−∆ui−Ki(xinew−x
i).

We note that the cost of this approach grows at most cubically rather than exponentially with respect to

the dimensionality of the state. We formulate the trajectory optimization with an infinite time horizon

so that the value functions and control laws are time invariant and functions only of state.

Combining greedy local optimizers to perform global optimization: As currently described,

the algorithm finds a locally optimal policy, but not necessarily a globally optimal policy. However,

if the combination of local value function models generate a global value function that satisfies the

Bellman equation everywhere, the resulting policy and value function are globally optimal [1, 2]. We

will refer to violations of the Bellman equation as “Bellman errors”. We can reduce Bellman errors
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Figure 5: Computing a 1D swingup value function using an adaptive grid.

by 1) re-optimizing local models that disagree using policies from neighboring local models, and 2)

adding additional local models in the area of the discrepancies until Bellman errors are reduced below

a threshold everywhere (up to a sampling resolution). This process does require globally optimizing

the command u for each test. The Bellman error approach becomes similar to a standard dynamic

programming approach as the resolution becomes infinite, and thus inherits the convergence properties

of grid-based dynamic programming [1, 2]. A weaker test which verifies that the value function

matches the current policy assesses the Bellman error for u(x) at each selected state, so no global
minimization is necessary. This test is useful in policy iteration.

A useful heuristic to detect local optima that does not require a global optimization on each test is

to enforce continuity of the value function and the policy. This heuristic often works because a switch

from a global optimum to a local optimum in a policy often shows up as a discontinuity in the policy or

value function. Unfortunately, often the optimal policies and value functions have true discontinuities.

As Fig. 2 shows, value functions can have derivative discontinuities (creases) at policy discontinuities.

In addition, value functions can have discontinuities in situations where there are multiple goals and

it is not possible to reach all goals from each state (which also may lead to policy discontinuities).

A second heuristic is that optimal trajectories should not normally cross any policy or value function

discontinuities given smooth dynamics and one step cost functions. However, there are exceptions to

this heuristic as well.

Discrepancies between local value function and policy models can also be used to guide compu-

tational effort and allocate local models. We can enforce continuity of local models by 1) using the

policy of one state of a pair to reoptimize the trajectory of the other state of the pair and vice versa,

and 2) adding more local models in between nearest neighbors that continue to disagree until the dis-

continuity is confirmed or eliminated [6]. We also periodically reoptimize each local model using

the policies of other local models. As more neighboring policies are considered in optimizing any

given local model, a wide range of actions are considered for each state. There are several ways to

perform reoptimization. Each local model could use the policy of a nearest neighbor, or a randomly

chosen neighbor with the distribution being distance dependent, or just choosing another local model

randomly with no consideration of distance. [6] describes how to follow a policy of another sampled

state if its trajectory is stored, or can be recomputed as needed. We have also explored a different

approach that does not require each sampled state to save its trajectory or recompute it. To “follow”

the policy of another state, we follow the locally linear policy for that state until the trajectory begins

to go away from the state. At that point we switch to following the globally approximated policy.

Since we apply this reoptimization process periodically with different randomly selected local mod-

els, over time we explore using a wide range of actions from each state. This process is an analog to

exploration in learning and to the global minimization with respect to actions found in the Bellman

equation. This approach is similar to using the method of characteristics to solve partial differential

equations [8] and finding value functions for games [9, 10, 11]. We note that value functions that

are discontinuous in known locations, with known patterns, or in a relatively small area can also be

handled with approaches that partition the space into regions with no discontinuities.

Adaptive grids: constant value contours: We have explored a number of adaptive grid tech-
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Figure 6: Randomly sampled states and trajectories for the one link swingup problem after 10, 20, 30,

40, 50, and 60 states are stored. These figures correspond to Fig. 4:right, with position on the x axis

and velocity on the y axis.

niques for trajectory-based dynamic programming. Adaptive grid techniques for solving partial dif-

ferential equations are useful for dynamic programming as well [12]. Fig. 5 shows a trajectory-based

approach being used to compute a global value function [6, 7]. An adaptive grid of initial conditions

are maintained on a “frontier” of constant value V (x) or cost-to-go. This “frontier” is one dimension
less than the dimensionality of x. Trajectories are optimized from each sample of the frontier, and

local models are maintained at each sample. The value function at each frontier sample is compared

with that of nearby points, using the local models for the value functions and policies. At discrepan-

cies the trajectories are re-optimized using the value function from the neighboring frontier point. If

this fails to resolve the discrepancy, new frontier points are added at the discrepancy until the discrep-

ancy is below a threshold. Fig. 5 shows the frontier being gradually expanded. Since each trajectory

optimization is independent, these approaches are “embarrassingly” parallel.

Adaptive grids: randomly sampling states: Fig. 6 shows an adaptive grid approach based on

randomly sampling states, similar to Fig. 5. In this case states are randomly sampled. If the predicted

value V (using the nearest local model) for a state is too high, it is rejected. If the predicted value is

too similar to the cost of an optimized trajectory, it is rejected. Otherwise it is added to the database

of sampled states, with its local value function and policy models. To generate the initial trajectory

for optimization the current approximated policy is used until the goal or a time limit is reached. In

the current implementation this involves finding the sampled state nearest to the current state in the

trajectory and using its locally linear policy to compute the action on each time step. The trajectory is

then locally optimized.

We expect the locally optimal policies to be fairly good because we 1) gradually increase the solved

volume (Fig. 6) and 2) use local optimizers. Given local optimization of actions, gradually increasing

the solved volume defined by a constant value contour will result in a globally optimal policy if the

boundary of this volume never touches a non adjacent section of itself, given reasonable dynamics

and one step cost functions. Fig. 2 and 4 show the creases in the value function (discontinuities in

the spatial derivative) and corresponding discontinuities in the policy that typically result when the

constant value contour touches a non adjacent section of itself as the limit on acceptable values is

increased.

2 Results

In addition to the one link swingup example presented in the introduction, we present results on two

link swingup (4 dimensional state), three link swingup (6 dimensional state), four link balance (8 di-

mensional state), and 5 link bipedal walking (10 dimensional state). In the first four cases we used a

random adaptive grid approach [13]. For the one link swingup case, the random state approach found a

globally optimal trajectory (the same trajectory found by our grid based approaches [14]) after adding

only 63 random states. Fig. 4 shows the distribution of states and their trajectories superimposed on
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Figure 7: Configurations from the simulated three link pendulum optimal swingup trajectory every

tenth of a second and at the end of the trajectory.
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Figure 8: Configurations every quarter second from a simulated response to a forward push (to the

right) of 22.5 Newton-seconds. The lower black rectangle indicates the extent of the symmetric foot.

a contour map of the value function for one link swingup and Fig. 6 shows how the solved volume

represented by the sampled states grows. For the two link swingup case, the random state approach

finds what we believe is a globally optimal trajectory (the same trajectory found by our tabular ap-

proaches [14]) after storing an average of 12000 random states, compared to 100 million states needed

by a tabular approach. For the three link swingup case, the random state approach found a good tra-

jectory after storing less than 22000 random states (Fig. 7). We were not able to solve this problem

using regular grid-based approaches with a 4 gigabyte table.

A simple model of standing balance: We provide results on a standing robot balancer that is

pushed (Fig. 8), to demonstrate that we can apply the approach to systems with eight dimensional

states. This problem is hard because the ankle torque is quite limited to prevent the foot from tilting

and the robot falling. We created a four link model that included a knee, shoulder, and arm. Each link

is modeled as a thin rod. We model perturbations as horizontal impulses applied to the middle of the

torso. The perturbations instantaneously change the joint velocities from zero to values appropriate

for the perturbation. We assume no slipping or other change of contact state during the perturbation.

Both the allowable states and possible torques are limited. The one step optimization criterion is a

combination of quadratic penalties on the deviations of the joint angles from their desired positions

(straight up with the arm hanging down), the joint velocities, and the joint torques: L(x,u) = (θ2a+
θ2k+θ2h+θ2s )+(θ̇2a+ θ̇2k+ θ̇2h+ θ̇2s )+0.002(τ2a+τ2k+τ2h+τ2s ) where 0.002 weights the torque penalty
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Figure 9: Trajectory-based dynamic programming applied to bipedal walking. On the left we show

the entries in a trajectory library, and on the right we show trajectories generated from the trajectory

library in response to perturbations. The red curve is the periodic steady state trajectory. 2D phase

portraits are shown which are projections of the actual 10D trajectories. We plot the angle and angular

velocity of a line from the hip to a foot.

relative to the position and velocity errors. The penalty on joint velocities reduces knee and shoulder

oscillations. After dynamic programming based on approximately 60,000 sampled states, Fig. 8 shows

the response to the largest perturbations that could be handled in the forward direction. We have

designed a linear quadratic regulator (LQR) controller that optimizes the same criterion on the four

link model, using a linearized dynamic model. For perturbations of 17.5 Newton-seconds and higher,

the LQR controller falls down, while the controller presented here is able to handle larger perturbations

of 22.5 Newton-seconds. We were able to generate behavior using optimization that matched human

responses for large perturbations [15, 16]. Interestingly, we found that a single optimization criterion

generated multiple strategies (both an ankle and hip strategy, for example).

We explored trajectory-based control of bipedal walking. We simulated a 5 link planar robot (2

legs and a torso). We optimized a periodic steady state trajectory (red curve) and 12 additional optimal

trajectory segments starting just after -4 and 10 Newton-seconds perturbations at the hip at different

times (Figure 9-left). The trajectory library was evaluated using perturbations of -10, -6, 6, 16, and 20

Newton-seconds at the hip (Figure 9-right). The robot successfully recovered from these perturbations.

The simulated robot could also walk up and down 5 degree inclines using this trajectory-based policy

generated by optimizing walking on level ground.

3 Related Work

Trajectories: In our approach we use trajectories to provide a more accurate estimate of the value of

a state. In reinforcement learning “rollout” or simulated trajectories are often used to provide training

data for approximating value functions [17, 18], as well as evaluating expectations in stochastic dy-
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namic programming. Murray et. al. used trajectories to provide estimates of values of a set of initial

states [19]. A number of efforts have been made to use collections of trajectories to represent poli-

cies [3, 20, 6, 7, 21, 22, 23, 24, 25, 26, 27]. [21] created sets of locally optimized trajectories to handle

changes to the system dynamics. NTG uses trajectory optimization based on trajectory libraries for

nonlinear control [28]. [6] and [7] used information transfer between stored trajectories to form sets

of globally optimized trajectories for control.

Local models: We use local models of the value function and policy. Werbos proposed using local

quadratic models of the value function [29]. The use of trajectories and a second order gradient-

based trajectory optimization procedure such as Differential Dynamic Programming (DDP) allows

us to use Taylor series-like local models of the value function and policy [4, 5]. Similar trajec-

tory optimization approaches could have been used [30], including robust trajectory optimization

approaches [31, 32, 33]. An alternative to local value function and policy models are global para-

metric models, for example [17, 34, 35]. A difficult problem is choosing a set of basis functions or

features for a global representation. Usually this has to be done by hand. An advantage of local models

is that the choice of basis functions or features is not as important.

4 Discussion

On what problems will our approach work well? We believe our approach can discover under-

lying simplicity in many typical problems. An example of a problem that appears complex but is

actually simple is a problem with linear dynamics and a quadratic one step cost function. Dynamic

programming can be done for such linear quadratic regulator (LQR) problems even with hundreds of

dimensions and it is not necessary to build a grid of states [36]. The cost of representing the value

function is quadratic in the dimensionality of the state. The cost of performing a “sweep” or update

of the value function is at most cubic in the state dimensionality. Continuous states and actions are

easy to handle. Perhaps many problems, such as the examples in this paper, have local simplifying

characteristics similar to LQR problems. For example, problems that are only “slightly” nonlinear and

have a locally quadratic cost function may be solvable with quite sparse representations. One goal

of our work is to develop methods that do not immediately build a hugely expensive representation

if it is not necessary, and attempt to harness simple and inexpensive parallel local planning to solve

complex planning problems. Another goal of our work is to develop methods that can take advantage

of situations where only a small amount of global interaction is necessary to enable local planners

capable of solving local problems to find globally optimal solutions.

Why dynamic programming? To generate a control law or policy, trajectory optimization can

be applied to many initial conditions, and the resulting commands can be interpolated as needed. If

that is the case, why do we need to deal with dynamic programming and the curse of dimensionality?

Dynamic programming is a global optimizer, while trajectory optimization alone finds local optima.

Often, the local optima found using just trajectory optimization are not acceptable.

What about state estimation, learning models, and robust policies? We assume we know the

dynamics and one step cost function, and have accurate state estimates. Future work will address

simultaneously learning a dynamic model, finding a robust policy, and performing state estimation

with an erroneous partially learned model [37, 38, 39].

Aren’t there better trajectory optimization methods than DDP? DDP, invented in the 1960s, is

useful to this approach because it produces local models of value functions and policies. It may be the

case that newer methods can optimize trajectories faster than DDP, and that we can use a combination

of methods to achieve our goals. Parametric trajectory optimization based on sequential quadratic
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programming (SQP) dominates work in aerospace and animation. We have used SQP methods to

initially optimize trajectories, and a final pass of DDP to produce local models of value functions and

policies.

5 Conclusion

We have combined local models, and local trajectory optimization to create a promising approach to

practical dynamic programming for robot control problems. We are able to solve problems we couldn’t

solve before using tabular or global function approximation approaches. Future work will optimize

aspects and variants of this approach and do a thorough comparison with alternative approaches
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