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Abstract— This paper presents a standing balance controller.
We employ a library of optimal trajectories and the neighboring
optimal control method to generate local approximations tothe
optimal control. We take advantage of a parametric nonlinea
optimization method, SNOPT, to generate initial trajectories
and then use Differential Dynamic Programming (DDP) to
further refine them and get their neighboring optimal con-
trol. A library generation method is proposed, which keeps
the trajectory library to a reasonable size. We compare the
proposed controller with an optimal controller and an LQR
based gain scheduling controller using the same optimizain
criterion. Simulation results demonstrate the performane of
the proposed method.

I. INTRODUCTION

Humanoid robots are expected to interact with humans
and complex unstructured environments, so unexpected per-
turbations, such as collisions with people or moving olsiect Fig. 1. Two-link robot model.
are inevitable. This paper focuses on balance control durin
upright stance with unexpected pushes.

Bio-mechanically motivated controllers, such as [1], ando get a feedback control law [10]. We take advantage
intuitive controller designs, such [2], [3] have been stadi of parametric nonlinear programming methods to generate
In [4], [5], optimal control and state estimation is used tdnitial trajectories, which are then refined by DDP to progluc
explain selection of control strategies used by humans. Thecal control laws and more optimal trajectories.
system is linearized and Linear Quadratic Regulators are Most previous work assumes that pushes are instantaneous
designed for each perturbation. A form of gain schedulingnd change the joint velocities instantaneously. In peagcti
is employed to account for nonlinearities caused by contrtéthe pushes may last for a while. The proposed controller can
and bio-mechanical constraints. handle instantaneous and continuous pushes.

In [6], it was shown that multiple balance recovery strate- The rest of the paper is organized as follows. In section I,
gies can be generated by a single optimization criteriothe robot model and the optimization criterion are proposed
which means human balance control can be interpret&ection Il describes the neighboring optimal control noeth
as optimal control. For nonlinear systems, Dynamic PrdSection IV and V propose the optimal trajectory library
gramming (DP) provides a way to find globally optimalgeneration method and the balance controller. Simulation
control laws. But for high dimensional systems, such as i@sults are provided in section VI to demonstrate the viglidi
humanoid robot, the computation and even the storage ahd the performance of the proposed method. Conclusions
nonlinear feedback laws becomes intractable [7]. Paraenetand future work are discussed in Section VII.
nonlinear programming methods, such as SQP (Sequential
Quadratic Programming), have been used to solve trajectory
optimization for finite dimensional problems [8]. Differtgad A two-link inverted pendulum model in the sagittal plane
Dynamic Programming (DDP), which is a second ordeis modeled, as shown in Fig. 1. The parameters are listed in
gradient technique for trajectory optimization [9], aggli Table |, wherd,.,, andl,.,, are the distances from the center
the principle of optimality in the neighborhood of a nominalof mass (CoM) of each link to the joint below, and Mol
trajectory. This allows the coefficients of a linear or quaidr and Mok are the momentum of inertia of each link about
expansion of the value function to be computed along thigs CoM. The ankle angle is bounded by).52 < 4, < 0.79
trajectory. These coefficients may then be used to computedians. The hip angle is bounded b.18 < 6, < 0.52
an improved trajectory and a local approximation to th#adians.f, = 0 andé, = 0 is upright. The ankle velocity
optimal control law in its neighborhood, which can be useds bounded by—4.6 < v, < 4.6 radians/second. The hip

velocity is bounded by-7.7 < v, < 7.7 radians/second.
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IV. TRAJECTORYLIBRARY GENERATION
PARAMETERS OF THE ROBOT MODEL

A. Trajectory Library on a Uniform Grid

lll;n(r?%) 8:223 l;j"fr?%) g:gif One way to generate the initial trajectories is to use motion
m1 (KQ) 19.474 ma (KQ) 29.492 capture data of humans. The effectiveness will largely ddpe
Mol (Kg.m?) | 0.696 | Molz (Kg.m?) [ 1.03356 on how close the dynamic models used by the robot and

by humans are. Another way is to use parametric nonlinear

programming methods. Parametric nonlinear programming
in standing the center of pressure is at the center of the foohethods have been used to solve trajectory optimization
then the maximum ankle torque #850 Newton-meters. A problems [8]. We find they are generally more robust in terms
horizontal push is applied on some point of a link, where of finding a solution than DDP.
is the size of push and is the distance from the point of SNOPT is a general-purpose system for constrained op-
action to the joint below. timization using a sparse sequential quadratic programmin

The one step optimization criterion is the weighted sum ofSQP) method [12]. We use it to generate initial trajectorie

the squared deviations of the current state from the desiréol different conditions. For standing balance control, a
state and the squared joint torques: selection of initial conditions is considered. For constan

pushes, the initial joint angles and velocities are all zero

L(x,u) =T(x — x4)"Q(x —x4) + Tu"Ru, (1) The push sizep, and the push location:, are not zero.

For instantaneous pushes, the initial joint velocities are
not zero. The initial joint angles, the push size, and the
push location are all zero. For constant pushes, the robot
Ceventually leans into the pushes and attains zero jointitarg
In order to balance after the constant pushes are removed,
initial conditions with nonzero joint angles should also be
considered. For each type of push, initial conditions are
generated on a uniform grid. Trajectories are optimized by

where T is the time step of the simulatior.(1s), x* =
(0a,0n,vq,vp) is the current staten” = (7,,7,) is the
control vector,x, is the desired state, which is the stati
equilibrium state for a specified pusf) and R are both
currently identity matrices with appropriate dimensions.

IIl. NEIGHBORING OPTIMAL CONTROL

Given the dynamics of the robot: SNOPT for each initial condition. For example, we use 10
Newtons as the push magnitude step size, 0.3 meters as the
x(k+1) = f(x(k),u(k),p(k),r(k)), (2) push location step size, and generate initial trajectaies

uniform grid for constant pushes on the torso.
wherep(k) is the push sizer(k) is the push location, and _ _ _ )
the optimal return function B. Optimal Trajectory Generation For the Library
After creating these trajectories, we use DDP to refine
VOPH(xPH(k)) = L(xP*(k), u""(k)) + VP (x*?(k + 1)), them and store the trajectories and their feedback gain
(3) matrices in the library. Given a good starting trajectory,
whereu”* (k) is the optimal control for the stat&’”*(k). DDP can find better solution rapidly. Therefore, in order
The neighboring optimal control is given by [11]: to generate an optimal trajectory for any specified initial
Y o Y condition, we use the closest trajectory in the library to
u(k) = u" (k) — K (k) (x(k) — %" (k)) (4) generate the starting trajectory, which is then refined byPDD
The distant is given byx”, p,»)D(x”, p,7)T. The range of
Au°rt (k) p is about—80 to +80 and the range of is between O_
~ (k) (5) and 0.653. They both have large effects on the dynamics,
so we give large weights to them, which are 10 and 1000,
In order to computeK°P(k), the partial derivatives,  respectively. The range of joint velocity is about 10 tinestt
and V,, have to be computed along the trajectory. Give®f joint angle, so the weight 0.1 for velocities and 1 for join
an optimal trajectory, one can integrat&k), V,(k), and angles is used. The starting trajectory is generated by the
V.. (k) backward in time starting from the end of theneighboring optimal control of the closest library trajagt
trajectory [9]. DDP is then used to improve it, which not only gives the
The neighboring optimal control law is a local linearoptimal trajectory, but also its control gains. As the stayt
model for the optimal policy in the neighborhood of thetrajectories are close to the final solutions, the convergen
optimal trajectory. Therefore, a closed-loop feedbackmn ©f DDP is rapid.
solution can be given by:

and
K%' (k) =

C. Trajectory Library on an Adaptive Grid
u(x) = a— K(x — ), (6) We also propose an adaptive grid of initial conditions
for the trajectories stored in the library. The optimizatis
wherex is the closest state on the optimal trajectory to thetarted from the zero push, the neighboring optimal control
current statex, @ and K are the optimal control and the of the closest library trajectory is used for the currentrpus
feedback gain matrix corresponding %o which gives the total cost)’(p). Compare it with the total
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one trajectory is chosen from the library. Given the optimal
trajectory and its neighboring optimal control feedbackga
we get a local linear approximation to the optimal contral la
in its neighborhood. According to the current state estimat
X, the closest state on the optimal trajectaty,along with
the corresponding controii, and the feedback gain matrix,
K are used. The state distance is givenxyD’x, where
D’ is diag(1,1,0.1,0.1) currently. The output of the congaoll
is thus given by:
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Fig. 2. The lookup table for constant pushes on the torso. We have no sensor for the joint velocities, the push size,
and the push location, which have to be estimated. We

X, p,f , employ a new state variablg,” = (0,, 05, v,, vn, p,7) and
| » an observationz” = (8,0, fz, f.), whered, and @, are
Trajectory

State and Push noisy measurements of the ankle angle and the hip arfigle,

Estimator ‘ Find Nearest Neighbor ‘ and f, are noisy measurements of the ankle forces, as shown
? *X TK in Fig. 1. Therefore, the state transition and the obseymati
— model are given by:
‘ Sensors ‘ ‘ u=tu-K(x-X) ‘
4 {u y(k+1) = g(y(k),u(k)) + (8)
| Robot | 2(k) = h(y(k).u(k) +v ©)
w ~ N(0,S) v~ N(0,T) (10)
Fig. 3. Standing balance controller architecture. f x(k),u(k),p(k),r(k))
gly,u) = p(k) (11)
. | r(k)
cost of the optimal controlC'(p). Increase the push size - 0

gradually until|C’ (p) — C(p)| > Ciimst. Save the last push 0

size, piast, as the control region’s upper boundary of the h(y,u) = h , (12)
currently used library trajectory. Then continue to insea Ta(y(k), u(k))

the push size, generate the optimal trajectory, and use its Lf=(y(k), u(k))

neighboring optimal control for the push @f.s:, which wheref(.) is the dynamics of the robot, the noise terms
gives the total cost)’ (p;.s¢ ). Save the last optimal trajectory and v are uncorrelatedS and T are covariance matrices.
into the library before|C’(piast) — C(piast)] = Cumit- The state transition model and the observation model are
Repeat the above steps until the control region is too smddbth nonlinear, so the Extended Kalman Filter is employed

or DDP can not find a feasible optimal solution. [13]. The Extended Kalman Filter linearizes the nonlinear
With the increase of push size, the control region of thetate transition model and the observation model as

neighboring optimal control becomes small. The stop condi- og

tion prevents it from saving too many trajectories which can F(k) = v (13)

only control small regions, and searching infeasible ahiti Y Iy (h=1jk=1),u(k-1)

conditions. Thus computation and storage can be saved. In H(k) = oh (14)

addition, only trajectories contribute to the performaace dy y(k|lk—1),u(k—1)

saved, which keeps the final library to a reasonable size. For, predict the
example, we use 1000 &%;,,;; and generate trajectories to

handle constant pushes on the torso. The final library has ¥(klk—1) = gk —1/k—1),u(k—-1)) (15)
only 30 trajectories. The result is shown as Fig. 2, in which Pklk—1) = Fk)Pk—1]k— 1)FT(k) +S (16)
each block defines a control region of one optimal trajectory

The middle large region uses the optimal trajectory for @zer 10 Update the state after measurements are taken:

next state before measurements are taken:

push, which is LQR controller actually. Zerr = z(k) — h(§(k|k — 1), u(k — 1)) (17)
V. BALANCE CONTROLLER K(k) =P(klk — HDH"(HP(k|k — 1)H" + T)"" (18)

A. Controller Architecture Y(klk) = (klk = 1) + K(k)zerr (19)
Pklk) = I-KEk)H)P(klk —1), (20)

The standing balance controller is shown in Fig. 3. In
each time step, the state estimatethe push size estimate, whereK is the Kalman gain matrix anB is the covariance
p, and the push location estimat®,are calculated. Then matrix for the state estimation.
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Fig. 4. The robot under the constant forward push at the héd@ dlewtons. The frames are taken in intervals of 0.3 seconds
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Fig. 14. Joint velocities for random pushes sequence.

Fig. 12. Push size and location estimates for the short falvpaish at
head of 50 Newtons, lasting 0.5 seconds. 50

VI. SIMULATION RESULTS

In the following simulation, the state transition covaan
matrix S is diag(.01%, 0.012, 0.012, 0.012, 1, 0.01%) and
the observation covariance matri is diag(.01%, 0.012,
0.012, 0.012). 8, 04, v,, andv;, denote the true values of
ankle angle, hip angle, ankle velocity, and hip velocityeifh
estimates are denoted Wy, 0y, 0., and oy. 0., 05, Ua,
andwy,, 7., and7, are elements of the closest state and its -50 5 3
corresponding controls in the trajectory library.andr;, are Time (s)
applied torques at the ankle joint and the hip joint.

In the first simulation, a constant push of 42 Newtons
at the head in the forward direction is applied. There is
not trajectory for exactly the same push in the library, so
the closest trajectory for constant push of 39.5 Newtons at
the head is selected. As shown in Figs. 4 and 5, the robot
employs hip torque to accelerate the torso, bends forward
quickly, and then it leans backward into the push in order
to use gravity to balance the push. Finally, all joint torsjue
tend to zero. As shown in Figs. 6, 7, and 8, the state and
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o

Fig. 15. Joint torques for random pushes sequence.
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In the second simulation, a large short push at the head of = 0, ; s 5 : : = .
. . . . . [}
50 Newtons in the forward direction lasting 0.5 seconds is g Time (s)

tested. As shown in Figs. 9, 10, 11, and 12, the robot uses _ _ _
hip torque to accelerate the torso, bends forward, and yinaIIF'g- 16. Push size and location estimates for random pusiesence.



Performance Comparison Differential Dynamic Programming (DDP) is used to gen-

10000 erate the optimal trajectories and the neighboring optimal
8000 control. A nonlinear programming method, SNOPT, is used
to generate starting trajectories for DDP refinement, which
6000l makes the convergence rapid.
% The proposed trajectory library generation method saves
2 4000k . computation. It makes the final library compact but also
w q.,j" satisfy the performance requirements. The trajectories an
20000 & . o o thus the linear approximation to the optimal control law can
WV o VW be accessed effectively using a lookup table, which make the
% s VAV St proposed controller applicable for real-time control.
-55-45-35-25-15 -5 5 15 25 35 45 55 . . . .
Push size (N) In our future work, robots with more links will be studied.

For example, the 'squat strategy’ can be generated if thetrob
Fig. 17. Performance comparison when pushes are appliec3%3 én of i i ; i ;
the torso. The blue dots are total costs under the optimataltar, while has kr.]ee joints. ACtua”y |r_nple_ment|n_g this a.lgorlthm on a
the red open circles are total costs under the proposedodentr robot !S also expected_. Th's will require deallng W_'th floor

compliance and coordinating both legs and feet. Finally, we

would like to extend our model to include a full 3D humanoid
recovers its posture to be upright. It is also shown that th@bot.
state and push estimates approach to the true values in a very
short time. In Fig. 12, the push location estimate is wrong

when the push size is zero. However, this error can be ignorg] M. Abdallah and A. Goswami, A biomechanically motivaltawo-

phase strategy for biped upright balance control,” Rroc. |IEEE

because of a zero push. ) ] International Conference on Robotics and Automation (ICRA’2005),
The robustness of the proposed controller is tested with a  April 2005, pp. 1996-2001. _

sequence of random pushes. The test push size sequencd®sB._Stephens, ‘Integral control of humanoid balance,” Rroc.

. . IEEE International Conference on Intelligent Robots and ems
15, 45, and 25 Newtons. Trajectories for constant pushes of (1ros2007), October 2007, pp. 4020 _4827. st

20, 39.5, and 26 Newtons are used. As shown in Figs. 13, 143] —, “Humanoid push recovery,” inProc. The IEEE-RAS 2007

15, and 16, for pushes of sizes and locations not in library :\Téflfgrﬁ)(:‘rajzc%’?”fe'mce on Humanoid Robots, Pittsburgh, PA, US,
and changing with time, the robot can still keep balance. (4 A kuo, “an optimal control model for analyzing human fiogal

For different push sizes and push locations on the torso, balance,’IEEE Transactions on Biomedical Engineering, vol. 42(1),

the performance of the proposed controller is compared with_ PP- 87-101, January 1995.
P prop P S. Park, F. Horak, and A. Kuo, “Postural feedback resperssale with

th.at 'E)f the optimal C(l)ntrO.”er using the same optimization™ " piomechanical constraints in human standinggperimental Brain
criterion. As shown in Fig. 17, the performance of the  Research, vol. 154(4), pp. 417-427, February 2004.

i ; [6] C. Atkeson and B. Stephens, “Multiple balance stratedi®m one
proposed controller is close to that of the optimal controll optimization criterion,” inProc. The |EEE-RAS 2007 International

when there are trajectories il’_l the library for the pushes tha  conference on Humanoid Robots, Pittsburgh, PA, US, November 2007.
are close to the pushes applied. It becomes worse when thi§ ——, “Random sampling of states in dynamic programmindEE

; i ; Transactions on Ssytems, Man, and Cybernetics Part B: Cybernetics,
applied pushes are far from what is in the library. Because th vol. 38(4). pp. 924-929, August 2008,

trajectory library is generated according to the perfore@an (g m. Hardt, “multibody dynamical algorithms, numericaptimal con-
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VIl. CONCLUSION AND FUTURE WORK

In this paper, a balance controller based on a trajectory
library is proposed. We demonstrate that a trajectory fibra
can be used for constrained nonlinear system control, ssich a
a humanoid robot standing balance control. Taking balance
control as an optimal control problem, the trajectory lityra
and the neighboring optimal control method are used to
generate local linear approximations to the optimal cdntro



