Due: Friday, 9/7/01

1. Fill in the table of Denavit-Hartenburg parameters for the three-link RPR robot shown below.

Joint	$oldsymbol{q}_{ ext{I}}$	d_{i}	a_{i}	$\boldsymbol{a}_{\mathrm{i}}$
1				
2				
3				

- 2. Use the results from the table above and the D-H matrix given on page 18 of your notes to write the three Denavit-Hartenburg transformation matrices (one for each joint) for the RPR Planar Robot (shown below)
- 2. Write the overall transformation matrix which relates the final coordinates $(x_3y_3z_3)$ to the "base" coordinates $(x_0y_0z_0)$ for the RPR Planar Robot (shown below).
- 3. Check the RPR robot in the following configurations

a)
$$\theta_1 = 0^\circ$$
, $a_1 = 2$, $d_2 = 4$, $\theta_3 = 90^\circ$, $a_3 = 2$

a)
$$\theta_1 = 45^\circ$$
, $a_1 = 2$, $d_2 = 4$, $\theta_3 = 45^\circ$, $a_3 = 2$

a)
$$\theta_1 = 90^\circ$$
, $a_1 = 2$, $d_2 = 4$, $\theta_3 = 0^\circ$, $a_3 = 2$

"Checking" involves:

- plug values into overall transformation matrix,
- sketch robot in configuration,
- identify position of final coordinate system $(X_3Y_3Z_3)$
- identify direction cosines for final coordinate system $(X_3Y_3Z_3)$

