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Calibration-Free Robotic Eye–Hand Coordination Based
on an Auto Disturbance-Rejection Controller

Jianbo Su, Wenbin Qiu, Hongyu Ma, and Peng-Yung Woo

Abstract—This paper addresses the calibration-free robotic eye-hand co-
ordination in a way other than the conventional image Jacobian matrix ap-
proach that has been studied extensively in literature. A nonlinearmapping
rather than the linear mapping used in the image Jacobian matrix between
the image space and the robotic control space is proposed. This mapping
is regarded as the system’s unmodeled dynamics expressed in system state
equations. An extended state observer is designed first to estimate the un-
modeled dynamics as well as the external disturbance of the system. With
the estimation results as the compensation, a system controller is designed
based on the nonlinear state-error feedback control strategy. Convergence
of the extended state observer as well as the overall controller for a typical
eye-hand coordination system is proved. Compared with the conventional
calibration-free robotic eye-hand coordination with a Jacobian matrix, the
proposed controller is independent of specific tasks and system configura-
tions. Thus, a general design procedure is proposed for the calibration-free
robotic eye-hand coordination. Simulation and experiment results demon-
strate the satisfactory performance and effectiveness of the proposed ap-
proach.

Index Terms—Auto disturbance-rejection controller (ADRC), calibra-
tion-free, eye–hand coordination, robotic vision.

I. INTRODUCTION

The essence of the calibration-free robotic eye–hand coordination is
to use the visual information fed from the camera to plan the robotic
control for a specific task without any knowledge or with little knowl-
edge of the eye–hand relationship and the camera model [1]. Due to the
great potential of the calibration-free robotic eye–hand coordination
technology, much research has been done in this area. The basic and
the most investigated are the image Jacobian matrix-based approaches
[2]. Since a linear Jacobian matrix is used to describe approximately
the nonlinear mapping between the position error in the image space
and the robotic control, the Jacobian matrix is changing and needs an
online real-time estimation in the whole workspace during the whole
task [3], [4]. Although in some cases the changes of the image Jaco-
bian matrix do not affect the task process much so that a constant image
Jacobian matrix is acceptable [5], [6], an accurate estimation of the Ja-
cobian matrix online, evidently, is the key to the effectiveness of this
kind of approach [7].

The estimation of the image Jacobian matrix, in some applications,
is based on an online calibration of the eye–hand relationship [8], [9],
but it, by far, is based on an observation of the correspondent feature
changes of the target in the image plane and robotic workspace. The
hand is driven to move in the neighborhood of the robot’s present work
position with sufficient time to obtain a proper estimation of the image
Jacobian matrix at this work position [10]. These exploration move-
ments must be mutually irrelevant to each other to facilitate the esti-
mation algorithm. Since the image Jacobian matrix is closely related
to the robot’s work positions, this procedure is repeated redundantly
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during the whole task. Obviously, this strategy is decreasing the system
efficacy and inherently prohibitive to dynamic environments.
To improve the system efficacy and extend the application to dy-

namic environments and tasks, Sutanto et al. [4] suggest that the robot
movements in fulfilling the task be utilized to estimate the image Jaco-
bian matrix online so that the redundant movements in the estimation
process is eliminated. However, exploration movements of the robot at
the initial moment are still unavoidable to get an initial estimation of the
image Jacobian matrix for numerical iterations. Meanwhile, no mecha-
nism can be invoked to ensure that the sequential robot movements are
linearly independent of each other. Hosada et al. [11] and Jaegersand
et al. [12] propose to estimate the increments of the image Jacobian
matrix at each instant, which decreases relevance requirements for the
sequential robot movements. Qian et al. [13] propose to take advan-
tage of the well-known Kalman filter to estimate the image Jacobian
matrix by constructing an instrumental system with the elements of the
image Jacobianmatrix to be the system states. Thesemethodsmay only
overcome the estimation singularities caused by relevant movements of
the robot in sequential moments. Since robot movements are basically
designed to fulfill specific tasks under specific system configurations,
the estimation of the image Jacobian matrix is also related to specific
system configurations and tasks. The design of the robot movement at
each control moment that satisfies requirements for both task fulfill-
ment and image Jacobian matrix estimation is extremely difficult and
sometimes paradoxical.
To reduce the computational complexity of the online estimation

of the image Jacobian matrix, the artificial neural network is adopted
to map the linear image Jacobian matrix by offline training [14] and
use it in online control. Since the image Jacobian matrix describes a
temporary linear relationship, the capacity of the neural network to
approach a nonlinear function is not sufficiently exploited. In [15], a
nonlinear visual mapping model is invented to describe the dynamic
relationship between the system error observed by a camera and
the system control. The artificial neural network is used to map the
nonlinear model and produce control accordingly, which improves
the system performance to a great extent. However, in all artificial
neural network-based approaches, the neural network must be trained
offline before it is used for online control. Thus, enough training data
must be accumulated in advance from the whole robotic workspace,
which is usually a very tedious procedure [16]. Moreover, the training
procedure is normally very time-consuming, and the convergence of
the training algorithm should be clarified [17]. These issues prohibit
the feasibility of the neural network-based approaches to the calibra-
tion-free robotic eye–hand coordination.
Visual servoing has been studied for many years [18]. For calibra-

tion-free robotic eye–hand coordination, controller design is to face
the unknown and time-varying and spatially varying image Jacobian
matrix. Papanikolopoulos et al. [19] give an adaptive controller for
robotic visual tracking. Hashimoto et al. [6] describe visual servoing
as a linear constant multiple-input/multiple-output (MIMO) system by
considering the image Jacobian matrix as a constant one, so that they
adopt a linear quadratic (LQ)-based optimal controller to deal with it.
Nonlinear control [20] and robust control [21] theories can also be ap-
plied to visual servoing.
In this paper, we propose a new approach to explore the cali-

bration-free robotic eye–hand coordination. It is realized that the
unknown, time varying, and spatially varying image Jacobian ma-
trix actually serves as the system’s unmodeled dynamics when the
eye–hand coordination system is under control. In the conventional
control theory, many strategies have been developed so far to deal with
unmodeled dynamics. One approach is that the system’s unmodeled
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dynamics is estimated by a system observer and then is compensated
in the system control. Accordingly, an observer is constructed for the
eye–hand coordination system, so that the unknown image Jacobian
matrix is estimated online [22]. A nonlinear controller is consequently
proposed to converge the system error based on the real-time compen-
sation from the system observer [23]. Above all, the system’s input
signal is first filtered by a tracking differentiator to further improve
the system performance [18]. These three parts composed together
is named the auto disturbance-rejection controller (ADRC). Since
the design and analysis of the state observer and the controller are
well developed, this approach offers a standard design procedure for
the calibration-free robotic eye–hand coordination. Furthermore, a
task-free estimation of the image Jacobian matrix is achieved.

Section II presents the basics of the ADRC, i.e., the nonlinear
tracking differentiator, the extended state observer, and the nonlinear
controller adopted in this paper. Section III analyzes the nonlinear
mapping between the image plane and the robotic workspace. The
nonlinear mapping is then transformed to be an appropriate form for
the ADRC. A controller design is presented for a single-eye robotic
tracking. The stability and convergence of the state observer and the
controller are analyzed in Section IV. Simulation and experiment
results in Section V demonstrate the effectiveness of this approach. As
will be seen, it suppresses successfully the effects of the model uncer-
tainties and system disturbance and therefore has a strong adaptability
and robustness.

II. PRELIMINARIES OF THE ADRC

AnADRC is composed of three parts, namely, the nonlinear tracking
differentiator (TD), which is used to arrange the transient process of the
system, the extended state observer (ESO), which is used for the esti-
mation of the uncertainty and the external disturbance of the system,
and the nonlinear state-error feedback (NLSEF), which is used to ob-
tain the control input of the system.

A. Nonlinear TD

The TD is a dynamic system that gives two output signals x1(t) and
x2(t) for any input signal v(t), where x1(t) tracks the input signal
v(t) and x2(t) is the differentiation of x1(t). We have the following
theorem [24].

Theorem 1: If any solution of the system

_x1 = x2
_x2 = f(x1; x2)

(1)

satisfies xi(t) ! 0(i = 1; 2) when t ! 1, then for any bounded
integrable function v(t) and any constant T > 0, the solution for the
system

_x1 = x2
_x2 = r2f(x1 � v(t); x2=r)

(2)

satisfies

1) limr!1
T

0
jx1(t)� v(t)jdt = 0 (8T > 0);

2) when r ! 1; x2(t) weakly converges to the generalized
derivative of v(t).
Hence, when r is sufficiently large in practice, x1(t) tracks v(t)with

certain accuracy and the larger the r, the higher the accuracy.
In accordance with the above theorem, there are many kinds of TD.

A second-order TD most in use is

_x1 = x2
_x2 = �r fal(x1 � v; �; �) + � fal(x ;�;�)

r

(3)

where 0 < � < 1 and

fal ("; �; �) =
j"j�sign("); j"j > �

j"j=�1��; j"j � �:
(4)

The TD is used to arrange the practical transient process of the
system. It also provides the different orders of derivatives of the
tracked signal, which are used in the control strategy, which will be
discussed later.

B. Extended State Observer (ESO)

The ESO is a new state observer, which tracks the different orders of
the state variables of the system and estimates the unmodeled dynamics
and external disturbance of the system [22]. Therefore, it is actually the
key to the ADRC in controlling a system with an uncertainty. Assume
a nonlinear system with an uncertainty, which suffers from some un-
known external disturbance

x(n) = f x; _x; . . . ; x(n�1); t + w(t) + b0u(t) (5)

where f(x; _x; . . . ; x(n�1); t) is an unknown function, w(t) is the un-
known external disturbance, u(t) is the control input, and b0 is a known
constant. Let

x1(t) = x(t)
...
xn(t) = x(n�1)(t)

xn+1(t) = f(x; _x; . . . ; x(n�1); t) + w(t):

(6)

Then (5) can be transformed to

_x1(t) = x2(t)
...
_xn(t) = xn+1(t) + b0u(t)

_xn+1(t) = �(t)

(7)

where �(t) is an unknown function. Construct a nonlinear system

_z1(t) = z2(t)� g1(z1(t)� x1(t))
...
_zn(t) = zn+1(t)� gn(z1(t)� x1(t)) + b0u(t)

_zn+1(t) = �gn+1(z1(t)� x1(t))

(8)

where g1(e1); . . . ; gn+1(e1) are all appropriately constructed non-
linear continuous functions. From (7) and (8), we have

_e1(t) = e2(t)� g1(e1(t))
...
_en(t) = en+1(t)� gn(e1(t))

_en+1(t) = ��(t)� gn+1(e1(t))

(9)

where ei(t) = zi(t)� xi(t); (i = 1; . . . ; n + 1).
For an arbitrarily changing �(t) in a certain range, it is proven [22]

that if the nonlinear continuous functions g1(e1); . . . ; gn+1(e1) are
chosen to satisfy

e1gi(e1) > 0; 8e 6= 0; and gi(0) = 0(i = 1; . . . ; n+1) (10)

then system (9) is stable with respect to the origin. This means that,
with appropriate choices of functions g1(e1); . . . ; gn+1(e1), the states
of system (8) can track the corresponding states of system (7), i.e.,

z1(t)! x1(t); . . . ; zn(t)! xn(t); zn+1(t)! xn+1(t): (11)
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Fig. 1. Basic structure of the ADRC.

According to the definitions in (6), xn+1(t) is the summation
of the unknown function f(x; _x; . . . ; x(n�1); t) and the external
disturbance w(t) in (5). Thus, the output zn+1 in system (8) can have
the real-time estimation for xn+1(t) as long as a set of functions
g1(e1); . . . ; gn+1(e1) can be found to meet the conditions in (10).
Since xn+1(t) is an extended state defined in addition to the necessary
states, x1(t); . . . ; xn(t), to describe the dynamics in (5), the nonlinear
system (8) is hence called the ESO. It is obvious that the ESO is one
order higher than that of the system to be observed. The convergence
of the ESO is still an open problem for general cases. Analysis of the
performance of a second-order ESO can be found in [25].

It is worth mentioning [25] that the system (8) is the classical Luen-
berger observer when gi(e1) = e1(i = 1; . . . ; n+1) and is a variable
structure observer when gi(e1) = e1+kisign(e1)(i = 1; . . . ; n+1).

If the system output y(t) needs to track a given signal v(t), the TD
is to arrange the transient process x1(t) in tracking v(t). The ESO then
uses the tracking output y(t) as its input rather than x1(t) itself. This
strategy makes the ESO have a more direct measurement of the system
tracking performance.

C. Nonlinear State-Error Feedback (NLSEF)

In this subsection, a controller for system (5) is discussed. Substi-
tuting the definition of xn+1(t) into (5), we have

x(n)(t) = xn+1(t) + b0u(t): (12)

If

u(t) = u0(t)� xn+1(t)=b0 (13)

then (12) becomes

x(n)(t) = b0u0(t): (14)

This means that, if the system output is y = x(n), the open-loop
system between u0(t) and y is a cascaded integrator plant with a gain
of b0. Hereby, we discuss how to designu0(t) to control the system (14)
from the system error feedback. Since x1; x2; . . . ; xn are the different
orders of the derivatives of the system input v(t) formed by the TD,
and z1; z2; . . . ; zn are the state variables of the system observed by the
ESO, the errors between the two groups of variables

ei = xi � zi; i = 1; . . . ; n (15)

characterize the system’s dynamic performance. We take advantage of
a nonlinear combination of the errors to realize the control [23]

u0 = b1fal(e1; �; �) + . . . + bnfal(en; �; �) (16)

where the definition of fal(ei; �; �) is given in (4) and b1; . . . ; bn are
adjustable parameters. Substituting (16) into (13), the system inputu(t)
can be obtained, in which b0 is known, and xn+1(t) is estimated online
by the ESO. The nonlinear function fal(ei; �; �) of the system error ei
is preferred to outline the system control because it provides a small
linear region near ei = 0 so that no excessive gain that might lead to
high-frequency chattering can occur.
In (16), the controller is constructed by errors of two groups of vari-

ables, x1; x2; . . . ; xn, and z1; z2; . . . ; zn. No derivative of an error is
used, in contrast to a proportional integral derivative (PID) controller.
Considering that an error signal formed by the system input and output
is normally not derivable in practice, the proposed strategy is helpful in
improving the system performance. In addition, a nonlinear combina-
tion of the errors is adopted in (16), which may lead to a proper tradeoff
between the system’s response time and overshoots. The overall struc-
ture of the ADRC is given in Fig. 1.
From Fig. 1, it is seen that the ADRC is a nonlinear controller that

is independent of the system model. Accordingly, if it is used to deal
with the calibration-free robotic eye–hand coordination, the structure
and the design procedure of the coordination controller are expected to
be irrelevant to the system configurations. This is exactly what is to be
presented below.

III. SYSTEM MODELING AND CONTROLLER DESIGN

In this section, a dynamic system to describe the calibration-free
robotic eye–hand coordination is presented. The controller is designed
based on the aforementioned principle of the ADRC, which is a stan-
dard procedure and has nothing to do with the configurations and the
specific task of the eye–hand system.

A. Visual Mapping Model

Without loss of generality, a robotic eye–hand system with a global
monocular camera is taken as an example to demonstrate the system
modeling and controller design procedure based on the ADRC. Under
the single-eye global visual feedback, the task of the robotic eye–hand
coordination is to design a robotic control to make the target position
and the hand position to coincide with each other in the camera’s image
plane according to the error between them observed in the image. Sup-
pose that the hand position is W = (wx; wy; wz)

T in the robotic co-
ordinate system and is P = (px; py)

T in the image observed by the
camera. The target position in the image is P � = (p�x; p

�

y)
T , which

is also the desired hand position in the image, so that it is the signal
for the closed-loop system to track. The relationship between the hand
position in the image and that in the robotic coordinate system can be
expressed as

P = g(W ) (17)
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where g( � ) is a function representing all of the effects caused by the
eye–hand relationship model, the robot model, and the camera model.
Differentiation of the both sides of (17) leads to

_W = U
_P = J(W ) � U

(18)

where U is the velocity vector in the robotic coordinate system, which
is the system control. J(W ) is the Jacobian matrix of g(W ). (18) de-
scribes the differential change of the hand position at a certain instant
in the image caused by the differential hand movements in the robotic
coordinate system. The essence of calibration-free coordination is to
estimate at any instant the current Jacobian matrix. Then, based on its
inverse matrix and the specific hand movements in the image, the cal-
culation of the necessary hand movements in the robotic coordinate
system is done.

Without a loss of generality, only a three-dimensional (3-D) transla-
tional movement of the hand is considered, i.e., U = (ux; uy; uz)

T .
Since U and P are 3-D and two-dimensional (2-D), respectively, the
Jacobian matrix defined in (18) can be expressed as

J(W ) =
J11 J12 J13
J21 J22 J23

: (19)

Then

_P =
_px
_py

= J(W )U =
J11 J12 J13
J21 J22 J23

ux
uy
uz

: (20)

That is

_px = J11 � ux + J12 � uy + J13 � uz
_py = J21 � ux + J22 � uy + J23 � uz :

(21)

B. Controller Design

A calibration-free robotic eye–hand coordination controller based
on the principle of the aforementioned ADRC is then proposed. Let us
now rewrite the visual mapping model to be in a form suitable to the
ADRC. Suppose, in the robotic workspace, a reasonable guess of J(w)
is

Ĵ(W ) =
Ĵ11 Ĵ12 Ĵ13
Ĵ21 Ĵ22 Ĵ23

: (22)

This guess could practically be, for example, the average of all pos-
sible values of J(w) in the robotic workspace. Of course, it can only be
obtained empirically. System disturbances w1(t) and w2(t) are intro-
duced due to the system model inaccuracy, the errors in image detec-
tion, and the external disturbance. The system model (21) is rewritten
as

_px = (J11 � Ĵ11) � ux + J12 � uy + J13 � uz + w1(t) + Ĵ11 � ux
_py = J21 � ux + (J22 � Ĵ22) � uy + J23 � uz + w2(t) + Ĵ22 � uy:

(23)
If we define

ax(t) = (J11 � Ĵ11) � ux + J12 � uy + J13 � uz + w1(t)

ay(t) = J21 � ux + (J22 � Ĵ22) � uy + J23 � uz + w2(t)
(24)

then

_px = ax(t) + Ĵ11 � ux
_py = ay(t) + Ĵ22 � uy:

(25)

Thus, the original system (21) is transformed to be two decoupled
first-order subsystems, each of which has a form similar to (1). The two

subsystems in (25) describe the dynamics of the eye–hand coordination
in the x and y directions, respectively. ax(t) and ay(t) indicate the
total disturbances (including the system’s unmodeled dynamics and the
external disturbance) in the x and y subsystems, respectively.
Consequently, two ADRCs are designed to control the two subsys-

tems in (25). Hereafter, the tracking control in the x direction is taken
as the example to demonstrate the design of the ADRC. From (25), we
obtain the system equation

_wx = ux
_px = ax(t) + Ĵ11ux
y1 = px

(26)

where px is the system state variable, y1 is the system output, and ux is
the system control. It is seen that the system defined by (26) is a first-
order system. When p�x(t) is the system input, we design the first-order
TD as follows:

_xx1 = �rxfal (xx1 � p�x; �x0; �x0): (27)

A second-order ESO to estimate the system uncertainty and external
disturbance takes the following form:

_zx1 = zx2 � bx1fal(zx1 � y1; �x1; �x1) + Ĵ11ux
_zx2 = �bx2fal(zx1 � y1; �x2; �x2)

(28)

where bxi > 0; 0 < �xi < 1; (i = 1; 2). Define the state error of the
system tracking as

ex1 = xx1 � zx1: (29)

The system control input can be obtained by the following NLSEF
control law:

ux0 = kx0fal(ex1; �x; �x)

ux = (ux0 � zx2)=Ĵ11
(30)

where fal("; �; �) is defined in (4). Thus, the ADRC for target tracking
in the x direction is given by (27)–(30). Similarly, the controller in the
y direction can be designed.

IV. CONVERGENCE ANALYSIS OF THE COORDINATION CONTROLLER

The coordination controller is composed of three parts: a first-order
TD shown in (27), a second-order ESO shown in (28), and a nonlinear
controller shown in (30). In this section, the convergence of the ESO is
discussed first. Then an explanation for the convergence of the coordi-
nation controller is presented.
According to (9), if the ESO [see (28)] is applied to the system (26),

the observation error can be expressed as

_ex1 = ex2 � bx1fal(ex1; �x1; �x1)

_ex2 = !x � bx2fal(ex1; �x2; �x2)
(31)

where ex1 = zx1 � y1; ex2 = zx2 � ax, and !x = � _ax. The con-
vergence of (31) is analyzed via the self-stable region (SSR) approach
[25].

Definition: Let us assume thatG is a region in the state space, which
contains the origin. If it satisfies the condition that any system’s trajec-
tory, which remains in it after certain time, will eventually converge to
the origin, then G is called the self-stable region (SSR) of the system.
The SSR of a system defines the convergence of the system. The

convergence of (31) is proved by the following theorem.
Theorem 2: Define

hx(ex1; ex2) = ex2 � bx1fal(ex1; �x1; �x1) + kqx(ex1)sign(ex1)

where qx(ex1) is a continuous positive definite function, qx(0) = 0; k
is a constant, and k > 1. Then region

Gx = f(ex1; ex2) : jhx(ex1; ex2)j � qx(ex1)g (32)
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Fig. 2. System responses for the control in the x direction. (a) System input, output, and disturbance. (b) System control. (c) TD’s output tracks system input.
(d) ESO estimates system state and external disturbance.

is an SSR of system (31).
Proof: Suppose there exists (ex1(t); ex2(t)) 2 Gx; 8t > T .

From the structure of Gx, we have

�kqx(ex1)sign(ex1)� qx(ex1) � ex2 � bx1fal(ex1; �x1; �x1)

� �kqx(ex1)sign(ex1)+ qx(ex1):

(33)

Select a Lyapunov function of the system (31) as

Vx =
1

2
e
2

x1 (34)

then

_Vx = ex1 _ex1 = ex1(ex2 � bx1fal(ex1; �x1; �x1))

� �kqx(ex1)ex1sign(ex1)+ ex1qx(ex1): (35)

Since qx(ex1) is a continuous positive definite function, i.e.,
ex1qx(ex1) � jex1jqx(ex1), and k > 1, we have

_Vx � �(k � 1)qx(ex1)jex1j < 0; 8e1(t) 6= 0; t > T: (36)

This means

ex1(t)! 0; t!1: (37)

Similarly, according to the structure of Gx and the characteristics of
the functions fal(ex1; �x1; �x1) and qx(ex1), we also have

ex2(t)! 0; t!1: (38)

From the definition of the SSR, Gx is then an SSR of (31).
Theorem 2 defines the stable region for the ESO described by (28). It

also indicates that the existence of the SSR and the geometric structure
determined by (32) are independent of the unknown function!x, which

TABLE I
ADRC PARAMETERS

is determined by the system’s unmodeled dynamics and the external
disturbances.
When the nonlinear controller (30) is applied to the system (26), a

closed-loop system is obtained as follows:

_px = ax + kx0fal(ex1; �x1; �x1)� zx2: (39)

If the TD and the ESO are all convergent, we have

xx1 ! p
�

x
; zx1 ! y1 = px; zx2 ! ax: (40)

Thus, when t > T , (39) becomes

_px �= kx0fal(p
�

x
� px; �x1; �x1): (41)

According to the definition of the function fal(ex; �x; �x), it is easy
to know that the system (41) is convergent when the parameters are se-
lected appropriately [25]. Thus, the closed-loop system is convergent
when the TD, ESO, and nonlinear controller are all applied to the con-
trol system (26).

V. SIMULATIONS AND EXPERIMENTS

Simulations and experiments are conducted to demonstrate the fea-
sibility and the performance of the ADRC discussed above for the cal-
ibration-free robotic eye–hand coordination.
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Fig. 3. System responses for the control in the y direction. (a) System input, output, and disturbance. (b) System control. (c) TD’s output tracks system input.
(d) ESO estimates system state and external disturbance.

A. Simulations

In the simulation of approaching a static target, the hand and the
target are initially located at (0, 0) and (200;�100) in the image plane,
respectively. An external disturbance, which is a normal distributed
random noise with a maximum magnitude of �5 pixels and a zero av-
erage, is added to the system in the x and y directions, respectively. The
same controllers are used for both the x and y directions. The parame-
ters of the ADRC are chosen as shown in Table I. Since the two direc-
tions have the same controller parameters, the subscripts x in (27)–(30)
are omitted. Simulation results are depicted in Figs. 2–4.

Fig. 2 shows the system control in the x direction. Fig. 2(a) illustrates
the system’s input p�, the system’s tracking output p, and the external
disturbance w, whereas Fig. 2(b) illustrates the system control u to
converge the system error in the x direction. During the control process,
the TD is used to arrange a practical input for the system to track, which
is shown in Fig. 2(c) with a comparison of the system’s true input.
The ESO estimates the system state and the summation of the system’s
unmodeled dynamics and external disturbance, as shown in Fig. 2(d).
These estimations are used to compensate for the system control.

In the simulations, the coordination control described by (27)–(30)
is to let the hand approach a static target and track a moving target.
Without a loss of generality, an eye–hand system with a single global
visual feedback is employed. Specifically, the task is to control the hand
to approach and track the target so that the distance between the hand

Fig. 4. Approaching trajectory of the hand to the static target.

and the target in the image plane converges to a prescribed threshold.
The global visual feedback is conductedwith a camera focal length f =
6 mm. The camera image-plane quantization resolutions are Nx =
4:9=582 mm/pixel and Ny = 3:7=512 mm/pixel, respectively. Define
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Fig. 5. System response of the ADRC to track a planar moving target. (a) System input, output, and external disturbance in the x direction. (b) System control in
the x direction. (c) System input, output, and external disturbance in the y direction. (d) System control in the y direction. (e) The tracking trajectory of the hand
in the image plane.

the center of the image plane as the origin of the coordinate system.
The pose of the camera with respect to the robotic base coordinates are
defined in Euler angles:  = 80�; � = �70�, and ' = �160�, and
the translational movement vector is T = [40; 10; 1500]T mm.

Simulation results for the control in the y direction are accordingly
depicted in Fig. 3. The trajectory of the hand to approach the static
target is shown in Fig. 4.

In the simulation of tracking a moving target, the initial positions of
the hand and the target are at (0, 0) and (0, 150) in the image plane,

respectively. The target is making a circular movement, which is un-
known to the robotic controller.

p�x(t) = 150 sin(t=5)

p�y(t) = 150 cos(t=5):
(42)

An external disturbance in both the x and y directions are normal
distributed random noise with a maximummagnitude of�5 pixels and
a zero average. The same ADRCs with the same control parameters
shown in Table I are used in both the x and y directions. The system
response is given in Fig. 5.
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Fig. 6. System input and output in the (a) x direction and the (b) y direction.

Fig. 7. Control input in the (a) x direction and the (b) y direction.

In Fig. 5(a) and (c), the transient process of the system input is given
by the TD. The system tracks well in the transient process arranged
by the TD. The control inputs in the x and y directions are shown in
Fig. 5(b) and (d), respectively. Due to the system uncertainty and the
external disturbance, there are fluctuations in the control inputs. How-
ever, it is seen from Fig. 5(e) that the hand can catch up and track the
target quickly. Fig. 5(e) also shows that the tracking in the x direction
presents a rather large error systematically, which occurs when the di-
rection of the movement of the x component is changing. This implies
that the parameters selected in the x direction for the ADRC are not
very reasonable. It is noticed that, sometimes, different parameters are
selected in each of the two directions x and y to guarantee a better per-
formance of the system. This will be seen in the experiments below.

B. Experiments

An Adept 604S manipulator with a camera fixed above the robotic
workspace is used in an experimental system. The camera’s internal
parameters and its pose relative to the robotic coordinate system are
the same as those in simulations, but are not known to the controller. In
our experiments, the robot hand is to reach the target in the workspace,
which is now a plane. When the error between the position of the hand
image and that of the target image is within a certain range, the task
is done. The same order and structure of ADRCs are used in both the

TABLE II
ADRC PARAMETERS IN THE x DIRECTION

x and y directions. In order to overcome the larger tracking error in
the x direction, the parameters for each of the directions in the ADRC
are selected differently and empirically, as shown in Tables II and III,
respectively. Figs. 6 and 7 show the system response and the control
input, respectively. Fig. 8 demonstrates the motion trajectory of the
hand in the image.
In Fig. 8, we can see that, during the 0–9 sampling periods, the target

is always still at (113, 108). The initial position of the hand is at (17,
4). At the ninth sampling instant, the hand is at (71, 79), which is close
to the target, and the target is moved to a new position (184, 212) (in
this neighborhood, there is another target position seen, which is the
instant target position taken by the camera during the motion). Then
the hand keeps on moving toward the new target position. At the 16th
sampling instant, the hand moves to (200, 207). The position difference
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TABLE III
ADRC PARAMETERS IN THE y DIRECTION

Fig. 8. Tracking trajectory of the hand in the image plane.

between the hand and the target is now smaller than the prescribed
threshold. The system then believes that the hand has reached the target
position and the motion stops. In the whole process, both the control
inputs and the hand tracking movements are smooth, which confirms
the effectiveness of the parameter selections.

VI. CONCLUSION

A new approach to the calibration-free robotic eye–hand coordina-
tion is proposed. This approach integrates an ESO to estimate online the
system’s unmodeled dynamics and the external disturbances. A non-
linear controller is accordingly designed based on the observer’s com-
pensation. Convergence of the extended state observer and the overall
controller is analyzed and proved so that the performance of the ap-
proach is ensured. This approach is advantageous over the conventional
approaches to the calibration-free robotic eye–hand coordination in the
sense that the proposed solution to the unknown eye–hand relationship
is independent of either specific tasks or particular system configura-
tions and thus has a general meaning. The standard design procedure
of the ADRC for the calibration-free robotic eye–hand coordination is
presented. Simulations and experiments demonstrate that this approach
suppresses the effects of the external disturbance and therefore has a
strong adaptability and robustness.

Though the ADRC presents a kind of control strategy, which is in-
dependent of system model and external disturbance, its superiority
over the conventional approaches based on the Jacobian matrix has not
been well explored due to its own unsolved problems such as the pa-
rameter and nonlinear function selections. However, this paper demon-
strates that the ADRC can be successfully applied and offers a new
way of thinking for a task-free design in the calibration-free robotic
eye–hand coordination. It is believed that along with the development

of the ADRC theory itself, its application in the calibration-free robotic
eye–hand coordination will surely be further acknowledged.
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