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Nonlinear Visual Mapping Model for 3-D Visual Tracking
With Uncalibrated Eye-in-Hand Robotic System

Jianbo Su, Yugeng Xi, Uwe D. Hanebeck, and G. Schmidt

Abstract—A new control scheme for uncalibrated robotic visual
tracking problem is proposed that compromises the computational
expenses of overall system with offline modeling and online control. A non-
linear visual mapping model for the uncalibrated hand-eye coordination is
first proposed with an artificial neural network implementation. An online
visual tracking controller is then developed together with a real-time
motion planner. To improve the system performance, the control scheme
is also integrated with a feedforward controller to compensate unknown
object motions. Extensive simulations and experiments demonstrate the
effectiveness of the proposed control scheme.

Index Terms—Hand/eye coordination, image Jacobian matrix, neural
networks, nonlinear mapping.

I. INTRODUCTION

The essential problem in uncalibrated hand-eye coordination is how
to map the error information in the sensing space of the vision system
onto the control space of the robot without knowledge of the eye-hand
relationship [1], [8]. Equivalently, it is to study how the camera model
and the hand-eye relation model, which are static, globally nonlinear,
and of high dimensions in visual sensing and robot control spaces, can
easily be dealt with and realized in engineering sense. A well-known
and widely accepted solution to this problem is based on the image
Jacobian matrix introduced in [2]. The image Jacobian matrix is a local
and linear approximation to the global nonlinear hand-eye relations and
the camera model. Thus, it is time- and spatial variant and should be
estimated online via smartly designed process [4], [7].

There have been many specific techniques developed so far for esti-
mating image Jacobian matrix under different conditions [3], [6]. On-
line estimation of the image Jacobian matrix is computationally ex-
pensive for real-time control. Thus almost all successful applications
of the uncalibrated hand-eye coordination are from systems fulfilling
static tasks, such as grasping static object [6], pin-to-hole operation [5],
or static positioning [3], etc. In addition, researches so far illustrate that
the image Jacobian matrix-based methods cannot be used in the case
that the object and the camera are moving simultaneously, i.e., case
of dynamic tracking. The authors of [9] and [15] propose the ARMAX
and ARXmodel for dynamic tracking and achieve good results in asso-
ciation with adaptive control law. However, the scheme actually deals
with unknown object-related parameters, and at least rough calibration
of the eye-hand relationship is still required for control.

There also have been ways to estimate the image Jacobian matrix
in real-time control of robotic hand-eye coordination system, such as
by using the tool of artificial neural networks (ANNs) [11], [12]. The
offline training of the adopted ANN extraordinarily reduces computa-
tional complexity of online control in comparison with that of online
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estimation of image Jacobian matrix. However, due to the inherent lim-
itation of the image Jacobian matrix that is linear and local, capacity
of the ANN is far from being sufficiently exploited in this discipline.
Thus, this scheme is only effective in limited cases.

The advantage of the ANN to approximate any nonlinear function
with arbitrary preciseness should be sufficiently utilized in uncalibrated
hand-eye coordination to achieve good performance, but the image Ja-
cobian matrix model, which is local and linear, is weak in serving as
the base to approximate the nonlinearities and complexities of camera
models and hand-eye relations. Thus, a new nonlinear visual mapping
model is first proposed with the ANN realization. A visual tracking
controller is then designed based on the ANN to achieve robotic three-
dimensional (3-D) tracking.

Traditional calibration-based coordination requires offline calibra-
tion to obtain the globally static but complex hand-eye relationships
as well as the camera model for system control [13], [19]. Although
online control is easy to implement, the offline calibration process is
complicated and error-prone to realize in engineering [20]–[22]. The
image Jacobian matrix-based uncalibrated coordination avoids the of-
fline system calibration [16]. All modeling and control rely on online
computation [23] and require intelligent estimation and control skills
so that the model should be as simple as possible. This scheme is not
very efficient in that a prior knowledge of the system model cannot be
utilized and combined with the online control [17]. The new hand-eye
coordination scheme proposed in this paper not only makes use of a
prior knowledge of the system configuration but also adapt to changes
of environments and applications via online learning. From the new
scheme, a proper compromise between the computational complexi-
ties of offline training and online learning and control may be obtained.
Since the whole computation burden for uncalibrated robotic hand-eye
coordination is divided into two parts, better coordination performance
and wide applications may be expected to achieve under this scheme.

This paper is organized as follows. Section II describes the problem
to be investigated in this paper. Section III proposes the nonlinear vi-
sual mapping model, whereas Section IV addresses the control scheme
of the system based on the neural network realization of the proposed
model. A feedforward controller is suggested and discussed in this sec-
tion to improve the system performance while dealing with system dis-
turbance and environmental noises. Simulation results in Section V and
the experiments results in Section VI demonstrate the effectiveness of
the proposed scheme. Conclusions and future work are provided in Sec-
tion VII.

II. PROBLEM DESCRIPTION

For an eye-in-hand robotic system, the visual tracking problem
studied in this paper is defined as moving the robot hand to locate the
projection of a moving object in the image feature space as expected
all the time. Fig. 1 shows the system configuration. The camera is
fixed above the hand. The eye-hand relationship and the camera model
are totally unknown. An object translates freely in the 3-D workspace.
The vision controller does the motion planning in the image feature
space and maps the planned motion to the robotic control space to
instruct the manipulator servo controller. Consequently, translational
tracking of the hand movement is generated until the object tracking
process is stabilized and/or the object is grasped.

Fig. 2 shows the control and coordination structure we would adopt
for the system depicted in Fig. 1. The desired state of the system is
described in image plane. By a comparison with the true state of the
system, the system errors are obtained. A sequence of movements of
robot is planned from motion planning to eliminate the system errors.
The nonlinear visual mapping model transforms the planned motion
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Fig. 1. Eye-in-hand system configuration.

from image plane to the robot servo control and yields the control in-
structions for the robot to move its hand as well as the hand-mounted
camera. Since the control purpose is to drive the camera so that the ob-
ject is located at an expected position in camera’s image plane, the ob-
ject motion is thus considered as the external disturbance to the camera
motion in image plane. In this scheme, we can see that the nonlinear
visual mapping model plays a critical role for the system coordination.

III. VISUAL MAPPING MODEL

Define the image feature space 
 = spanfx; y; �g, where x and y

are the coordinates of the projected position of the object in the image
plane, respectively. The third parameter� is the featuremeasurement of
the object in the image plane, whichmight be the length in the image for
a rod-like object or the diameter or area in the image for a circular ob-
ject. Note that here, the image feature space is extended in dimension-
ality by including physical feature of the object in image plane in ad-
dition to the dimensions for describing its projected position. With this
definition, the dimension of the image feature space can be increased
to be the same as, or even higher than, the degrees of freedom of robot
control. Consequently, an invertible nonlinear visual mapping model
may be obtained that can uniquely transform errors from image feature
space to robot control space, or vice versa. Detailed explanations for
the policy we adopt here will be given later. Since we restrict ourselves
in this paper to 3-D translational movements of the robot hand, a 3-D
image feature space is enough for this purpose.

In this paper, we use ppp, vvv, and aaa to denote position, velocity, and ac-
celeration, respectively. The subscripts f , o, or c denote image feature,
object, or camera, whereas the subscripts i or w denote the image fea-
ture space or robot control space, respectively. Hereby, we consider the
mapping model from the robotic movement space to the image feature
space. Suppose that at time instant k, the instant velocity (the changing
rate) of the image features is vvvfi(k). From [9], we have

vvvfi(k) = vvvoi(k) + vvvci(k) (1)

where vvvoi(k) and vvvci(k) are the velocity components of the object in
image feature space due to the object’s translational motion and the
camera’s translational motion in robot control space, respectively.

The instant acceleration aaafi(k) of the object in image feature space
at instant k is decided by the relative movement between the object
and the camera. In the robot control space, the relative movement be-
tween the object and the camera at instant k is caused by the following
three entities, i.e., the object’s instant acceleration aaaow(k), the instant
relative velocity vvvco;w(k) between the object and the camera, and the
camera’s instant acceleration aaacw(k). Thus, the relative movement be-
tween the object and the camera can be decomposed to aaaow(k) with
a zero object velocity plus a constant relative velocity vvvco;w(k) and

plus aaacw(k) with a zero camera velocity. Therefore, correspondingly,
aaafi(k) can be decomposed into three parts, i.e.,

aaafi(k) = aaaoi(k) + aaaco;i(k) + aaaci(k) (2)

where aaaoi(k) is the acceleration component of the image features
caused by aaaow(k). Since the motion parameters of the object is not
measurable, we assume aaaow(k) = 0 here, and thus, aaaoi(k) = 0 (true
nonzero motions of the object will be regarded as external disturbances
to the controller and compensation means will be discussed later).
aaaco;i(k) is the acceleration component of the image features caused
by vvvco;w(k) after a nonlinear perspective projection. The physical
meaning is that even though vvvco;w(k) is a constant, the motion of
the projection point in the image plane is not a constant after the
nonlinear perspective projection. Since aaaco;i(k) can be uniquely
decided by pppfi(k) and vvvfi(k) in the image feature space, aaaco;i(k) can
be expressed as

aaaco;i(k) = gco(pppfi(k); vvvfi(k)): (3)

In (2), aaaci(k) is the acceleration component of the image features
caused by aaacw(k). Since the hand is exercising translational tracking,
aaacw(k) should be exactly the same as the hand translational accelera-
tion aaahw(k). Thus, aci(k) can be expressed as

aaaci(k) = gc(pppfi(k); aaahw(k)) (4)

where the hand acceleration aaahw(k) can be obtained from the hand
position coordinates ppphw(k) with a second-order differentiation (al-
though errors may be involved by the differentiation, we will see later
that this can be overcome in realization). Note that since the mapping
from the robotic movement space to the image feature space is non-
linear, the functions gco(�; �) and gc(�; �) in (3) and (4), respectively,
are nonlinear functions and are related. Putting (3) and (4) into (2), we
obtain the mapping model

aaafi(k) = g
0(pppfi(k); vvvfi(k); aaahw(k)): (5)

Equation (5) has the same dimensions of input and output. All co-
efficient matrices generally have full rank. Thus, the input-output re-
lationship can then be exchanged to obtain an inverse mapping model
from the image feature space to the robotic movement space, i.e.,

aaahw(k) = g(pppfi(k); vvvfi(k); aaafi(k)): (6)

This model, which is called the visual mapping model, nonlinearly
relates the hand movement to the motion of the object in image feature
space. Notice that this visual mapping model has the same dimensions
for input and output spaces. Since, here, we only consider translational
movements of the robot hand, which is 3-D, we also have a 3-D image
feature space. If we have more degree-of-freedoms for hand move-
ments, we should adopt more independent image feature parameters
of the object, which leads to higher dimension of image feature space.

The characteristic that the visual mapping model has the same di-
mensions of input and output spaces is very important for practical re-
alization and pursuing satisfactory tracking performance. In image Ja-
cobian matrix model-based methods, there exists a problem of tracking
singularity [6], [10], [18], which means that one or some of degree-of-
freedoms for hand movements might become uncontrollable or under-
controlled during the tracking procedure. Deep research shows that this
happens in the degenerate case when image features employed are not
sufficient to reflect robot motion in one or some direction(s). If the di-
mension of image feature is equal to or higher than that of robot motion,
then the tracking singularity maymost probably not occur. Specifically,
we choose the scheme that robot control space and the image feature
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Fig. 2. Control and dynamic coordination structure of the system depicted in Fig. 1.

Fig. 3. Overall control system of the robotic 3-D visual tracking.

space are of the same dimensions. This scheme is taken into account
when deriving the nonlinear visual mapping model, instead of being
used as an additional modification in image Jacobian matrix- based
methods. In this sense, the nonlinear visual mapping model is an ex-
tension of the image Jacobian matrix model that makes (6) nontrivial.
It can guarantee that the tracking singularity is eliminated practically,
although not theoretically. In addition, the same input–output dimen-
sion policy is very helpful for obtaining good convergence ability in
training if the model is realized with ANN.

It is worth mentioning that the proposed visual mapping model is
easy to extend to higher dimension ones or to the ones that have higher
dimension of image feature space than robot control space. This can be
done by invoking more independent image features from single image
or more simultaneous images frommulticameras to characterize object
state and motion in image feature space.

IV. CONTROL SCHEME

In the last section, we presented the nonlinear visual mapping model
described by (6). Since it is nonparametric, an ANN is constructed to
realize it so that the difficulty in parameter recognition is avoided via
offline training. We should point out that the capacity of ANN could
sufficiently be exploited for uncalibrated visual servoing only by taking
advantage of the nonlinear visual mapping model, which is more pow-
erful than the image Jacobian matrix for describing direct mapping
from visual space to robot control space.

For visual tracking, motion planning for robot hand is necessary for
pursuing stable performance. In the following subsections, we first ad-
dress the issue of motion planning and then the issue of construction
and training of the neural network to realize the nonlinear visual map-
ping model. Control instructions obtained from motion planning are
fed to the neural network to obtain robot movements that achieves dy-
namic visual tracking. Control structure of the whole system is shown
in Fig. 3.

Since the motion of the object aaaow is not known and cannot be mea-
sured online, it serves as the external disturbance to the tracking con-
troller. Thus, a feedforward controller DF is used to compensate the
unknown object movements and improves the tracking performance of
the whole system. Design ofDF will be discussed in Section IV-C.

A. Real-Time Motion Planning

The motion planning is done in the 3-D image feature space. The
input and output of the real-time motion planning module is shown
in Fig. 3. Given the global expected position ppp�fi of the object and its
present motion parameters pppfi(k), vvvfi(k) in the image feature space,
motion of the features are planned in real-time for the next time in-
stant, including the planned position of the object ppppfi(k + 1), the ve-
locity vvvpfi(k+ 1), and the acceleration aaapfi(k+ 1), to achieve a quick,
error-free tracking of the moving object. Meanwhile, the tracking error
caused by object velocity variation and visual mapping model inaccu-
racy is expected to overcome. Suppose that the Euclidean distance be-
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Fig. 4. Motion planning.

tween the position of the object pppfi(k) and the expected position ppp�fi
at the kth instant in the image feature space is d(k). In order to have
the hand approaching the object as soon as possible, the direction of
vvv
p

fi(k + 1) should always be pointing to ppp�fi, as shown in Fig. 4, and
then, we have the following.

1) When d(k) > d1, the magnitude of vvvpfi(k+ 1), jvvvpfi(k+ 1)j is
increased until the hand is moving with the maximally allowed ve-
locity.

2) When d1 > d(k) > d2, jvvv
p

fi(k+ 1)j is decreased until the hand is
moving with a low velocity.

3) When d(k) < d2, in accordance with the error between the cur-
rent position and the expected position in the image feature space,
vvv
p

fi(k + 1) could be calculated by using the PI control algorithm
so as to achieve error-free tracking

vvv
p

fi(k+1) = vvvfi(k)+c1[(ppp
�

fi�pppfi(k))�c2(ppp
�

fi�pppfi(k�1))]: (7)

In the tracking scheme, the thresholds satisfy d1 > d2 > 0, where
d1 and d2 are thresholds for switching to different schemes described
above. c1 and c2 are the proportional and integral coefficients of the PI
controller.

The output of the motion planner is the planned value of the object
feature accelerationaaapfi(k+1), which is approximately estimated from

aaa
p

fi(k+ 1) = vvv
p

fi(k + 1)� vvvfi(k): (8)

B. Neural Network Mapping

The function of the ANN is to realize the visual mapping model pro-
posed in Section III that transforms the planned motion in the image
feature space to the robot control space so that the motion instructions
are fed to the robotic servo controller. The ANN should be trained of-
fline before it is used in online control. The dotted-line arrows and
their confluent module in Fig. 3 show the input–output data and the
training phase prior to control. Based on the invertible mapping model
described in (6), a three-layer ANN with nine inputs and three outputs
is constructed. The back-propagation (BP) algorithmwith amomentum
term as an accelerator is utilized here for offline training of the ANN
[24].

The training-samples are obtained as follows. Let an object move
along a straight line with a constant velocity but different initial posi-
tions and initial velocities in the working space. Try to have the trajec-
tory to span the whole working space asmuch as possible. Amore prac-
tical case is that the object velocity is zero, i.e., the object is still. The
hand randomly translates in 3-D space, i.e., its acceleration is a random
variable. At each visual sampling instant, the position pppfi(k), the ve-
locity vvvfi(k), and the acceleration aaafi(k) of the object projection in
the image feature space as well as the hand acceleration aaahw(k) in the

Fig. 5. Tracking an object with a constant velocity.

Fig. 6. Tracking an object with a swirl movement.

robot control space are recorded as a group of training data. Note that
the hand acceleration aaahw(k) is obtained by a second-order differenti-
ation of its position coordinates ppphw(k). Although each single training
sample is prone to the image quantization errors and other noises, such
as noises from different order of differentiation, the visual mapping
model can still be approximated due to a large amount of training sam-
ples.

When training, pppfi(k), vvvfi(k), and aaafi(k) are stacked to be a nine-
dimensional input vector. aaahw(k) is the desired 3-D output vector.
After the training phase, the resultant weights of the trained ANN are
recorded and used for online control. When the ANN is used in discrete
visual tracking control, the inputs are the current position pppfi(k) and
the current velocity vvvfi(k) of the object projection in the image fea-
ture space as well as the planned image feature acceleration aaapfi(k+1)
obtained from motion planning. The output of the ANN is the acceler-
ation instruction for the robotic servo controller that is to be executed
in the coming visual sampling period, i.e., aaaphw(k + 1).

C. Feedforward-Feedback Controller

In deriving the nonlinear mapping model of (6), we assumed that
aaapow(k) = 0, which means aaaow(k) = 0 in (2), but the object is actually
moving with unknown velocity, i.e., aaaoi(k) 6= 0. Thus, an acceleration
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Fig. 7. Tracking with a change of the eye-hand relationship.

Fig. 8. Tracking after a rough training.

feedforward compensation controller DF is incorporated into the vi-
sual tracking controller to estimate the unknown motion of the object
and compensate for tracking control, as shown in Fig. 3.

Since the whole system is working in the discrete form by visual
sampling moment, we discuss the design of the compensation con-
troller DF in its discrete form DF (z). The function of DF (z) is to
estimate aaaoi caused by the object’s movement aaaow that cannot be mea-
sured directly. Since aaaoi acts as the external disturbance to the con-
troller, it is easy to infer that aaaoi is related to the difference between
the true velocity vvvfi(k) and the planned velocity vvvpfi(k) of the image
features. This difference can be measured in image feature space and is
thus used to estimate aaaoi by an ARmodel with the iterative least square
estimation method.

We choose the feedforward controller as

DF (z) = KF

1

A (z�1)
: (9)

Thus, we have

A z
�1

aaaoi (k) = KF vvvfi (k)� vvv
p

fi (k � 1) + � (k) (10)

Fig. 9. Expected object image.

Fig. 10. Initial position of the object in the image plane.

where

A z
�1 = 1+ a1z

�1 + � � �+ amz
�m (11)

and �(k) in (10) is a white noise sequence with a zero mean and a
variance � used for characterizing image quantization error and other
noises. KF and ai (i = 1; . . . ;m) in (9) and (11) are adjustable ac-
cording to applications to control the performance of DF (z). In (10),
a delay of one visual sampling period (we use vvvpfi(k � 1) instead of
vvv
p

fi(k) in (10)) is taken into account for detection motions of image
feature.

Substituting (11) into (10) and defining

�(k) = �aaaoi(k � 1); . . . ; aaaoi(k �m); vvvfi(k)� vvv
p

fi(k� 1)
T

�(k) = [a1; . . . ; am; KF ]
T

we have

aaaoi(k) = �(k)T�(k) + �(k): (12)

A typical estimation procedure is thus adopted to estimate�(k)with
the normal least square estimation method with forgetting factor. The
estimation value âaaoi(k) of aaaoi(k) can be obtained from (12). âaaoi(k)
is then added to the output of the motion planner to be the input of the
ANN. Thus, the effect of the unknown object motion on object tracking
can be compensated.

V. SIMULATIONS

The system configurations adopted in simulations are the same as
shown in Fig. 1. A single camera is mounted at the end link of the robot
manipulator. A rod-like object ismoving in robot’s 3-Dworkspace. The
image feature space is formed by the 2-D positions of the object and the
length of the object in the image plane. Thus, the image feature space is
three dimensional, which is important for 3-D visual tracking control
of the robot. Simulations are done for the above control scheme by
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Fig. 11. (a) Projection trajectory of the object in the image plane (the cross-point is the expected position). (b) Error curve of the object’s position in the image
plane.

using theNN toolbox inMatlab5.1. The sampling space in robot control
space for training the ANN is a cube of [�0:2 0:2 ]3 (in meters). An
ANN is constructed with nine inputs, three outputs, and 40 nodes in the
hidden layer. The weights of the ANN are obtained with 3601 training
samples and 20 000 iterations before being used in control. Parameters
for motion planning in all simulations are empirically chosen as c1 =
40=s, c2 = 0:5=s, d1 = 0:003 m, and d2 = 0:001 m.

Figs. 5 and 6 are the transient processes of the robot hand
approaching the object, where the position of the object is
shown by ppp

ow
= (Xo; Yo; Zo) and position of the robot hand

ppp
hw

= (Xh; Yh; Zh), both in the robot control space. In Fig. 5, the
object is moving in a constant velocity along a straight line in space,
whereas in Fig. 6, the object is moving with a swirl movement. The
roll angle and the pitch angle between the camera coordinate system
and the hand coordinate system are 30� and 20�, respectively. It is seen
from the figures that the tracking is satisfactory, and the steady-state
position errors of all axis directions in robot control space converge
to zero rapidly. Moreover, since the ANN has good generalization
ability, even though the object moves out of the training range in the
working space, the tracking controller is still effective (see Fig. 5).

Fig. 7 illustrates the tracking when the roll angle and the pitch angle
between the camera coordinate system and the hand coordinate system
are changed to 0 and �20�, respectively. It is seen from the figure
that even though no new training has been done for the ANN (i.e., the
same weights obtained from the old training are used.), there is still a
good tracking accomplished. It demonstrates that the controller based
on ANN has a strong ability in environmental adaptation.

Fig. 8 demonstrates the tracking curve in the case of an insufficient
training (638 training-samples, 1000 iterations, and 16 nodes in the
hidden-layer). In this simulation, white Gaussian noise with a mean-
square deviation of 0.36 (0.6 pixel of magnitude in each direction of
image grid) is further added at the position coordinates of the object
in image feature space to simulate quantization noise. We can see that
effective tracking is still achieved, even though the ANN model used
is undertrained and thus has quite rough realization for its nonlinear
visual mapping model. Of course, the transient process is longer and
vibrates more and the steady errors are larger when tracking is stable,
compared with those in Figs. 5–7.

VI. EXPERIMENTS

The experiments are to show how the visual mapping model and the
whole control scheme proposed in this paper works for uncalibrated

Fig. 12. Expected object image after a change of the pitch angle.

visual tracking. For simplicity of the system configurations, the object
is moving in a 2-D working plane.

An Adept 604s robotic manipulator is used in our experiments to
achieve object tracking. This robot arm has four degrees of freedom,
with the first three rotational joints and the last one prismatic joint.
Since the first two rotational joints of the robot can sufficiently accom-
plish 2-D movements for its hand, its last two degrees of freedom are
locked to facilitate robot control. Thus, the robotic manipulator is re-
duced to a two-link system.

The camera is fixed on the hand, and the object moves freely in the
working plane. For 2-D tracking, the purpose of the visual tracking
controller is to control the hand movement in accordance with the im-
ages taken, until the object position in the image plane coincides with
the expected position. In this case, the visual mapping model is 2-D,
with 2-D motion parameters of the object (position, velocity and ac-
celeration) in image feature space as inputs and 2-D hand movements
in robot control space as output. An ANN is constructed with six in-
puts and two outputs and 30 nodes in the hidden layer, which is simpler
compared with that used in simulations. The steps in the experiments
are as follows.

1) Obtain the expected image offline. The mass position of the ob-
ject in image plane is adopted as the image feature.

2) Train theANNofflinewith the similar procedures in simulations.
Six hundred groups of training samples are randomly collected
in robot’s working space. The ANN converges after 25 000 iter-
ations.

3) Exercise real-time feedback control by using the trained ANN.
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Fig. 13. (a) Projection trajectory of the object in the image plane (the cross-point is the expected position). (b) Error curve of the object’s position in the image
plane.

In the training-sample collection and the real-time control, the video
sampling rate is 15 images/s. The image size in processing is always
420� 350 pixels. All the images are first binarized with a properly
predefined threshold to decrease the impacts of image noises, object
shadow, and inconsistent lighting of the environments on object detec-
tion.

A. Low-Speed Visual Tracking

The expected image of the object for the experiment is shown in
Fig. 9. The image of the initial object position is shown in Fig. 10. In the
experiment, a round object moves in a certain directionwith a speed un-
known to robot control. Its area in the binary image plane is about 1800
pixels. The parameters for motion planner with the PI control law are
empirically chosen as c1 = 0:24 m=pixel � s and c2 = 0:8 m=pixel � s.
(Note that here, the error signals aremeasured in pixel, while in Simula-
tions, the error signals are measured in metric. Thus, c1 used here has
different scale factor from that used in Simulations.) Fig. 11 demon-
strates the visual tracking experimental results, where Fig. 11(a) is the
position trajectory of the object in image plane when the camera is con-
trolled moving in the robot control space, and Fig. 11(b) is the tracking
error in the X and Y directions in the image plane, respectively. It is
seen that the object projection is driven to the expected position and
that visual tracking is basically achieved.

The feedforward signal aaaoi for the image feature acceleration
caused by the object’s unknown motion is estimated iteratively by
(9)–(12). The output of the feedforward controller is actually the
sum of the output of the PI controller and the feedforward signal
aaapfi(k) + KFaaaoi(k), where we choose KF = 0:3 and m = 6
empirically in control. It is seen in Fig. 11 that the transient process is
satisfactory, and the steady tracking errors are only�2 pixels in theX
direction and�5 pixels in the Y direction in image plane, respectively.

B. Visual Tracking With the Changed Camera Pose

With a change of the pitch angle of the camera for about
+20 degrees, the new expected image of the object is taken and shown
in Fig. 12.

At the initial stage, the robot hand moves to an arbitrary position
in its working space but with the object in the camera’s field of view.
Fig. 13 shows the trajectory of the image feature varying under both
object motions and the controlled camera motions. Note that no new
training process for the ANN is run for the changed hand-eye rela-

tions. The effective tracking process is still obtained though the dy-
namic tracking error in the y direction, which is about �10 pixels, is a
little bit increased compared with that shown in Fig. 11. Here, a similar
feedforward controller as in the Section VI-A is also used to compen-
sate for object movement that is regarded as external disturbances to
the motion planner.

VII. CONCLUSION

A nonlinear visual mapping model for uncalibrated coordination of
eye-in-hand robotic system is proposed in this paper. This model is
more powerful and general than the image Jacobian matrix model, thus
providing more rooms for making full use of capacity of the neural net-
work and taking advantage of a prior knowledge of system configura-
tion via offline training. Moreover, it is advantageous over the image
Jacobian matrix model in the sense that it inherently avoids tracking
singularity problem and is straightforward to be extended to applica-
tions of high-dimensional tracking. Since the overall computational
complexity of the coordination control is split into offline training and
online planning, dynamic tracking is consequently easy and efficient
to achieve. Thus, in methodology, this scheme is a good solution for
proper tradeoff between offline modeling and online control.

Though the proposed scheme is successful in principle for dynamic
coordination control of the uncalibrated robotic hand-eye system, the
relationship between the ANN structure and the visual tracking system
is not yet clear. It is a challenge to design an efficient ANN to ap-
proach the robotic visual mapping model quickly and accurately with
relatively low computational load, which is the future work of this re-
search.
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Incremental Learning With Balanced Update on Receptive
Fields for Multi-Sensor Data Fusion

Jianbo Su, Jun Wang, and Yugeng Xi

Abstract—This paper addresses multi-sensor data fusion with incre-
mental learning ability. A new cost function is proposed for the receptive
field weighted regression (RFWR) algorithm based on the idea of back
propagation (BP), so that the computation efficiency and the learning
strategy of the modified RFWR are much more applicable for multi-sensor
data fusion problem. Thus a new fusion structure and algorithm with in-
cremental learning ability is constructed by adopting the modified RFWR
algorithm together with the weighted average algorithm. Experiments of
a two-camera unified positioning system are implemented successfully to
test the proposed computation structure and algorithms.

Index Terms—Back propagation, incremental learning, receptive field,
sensor fusion.

I. INTRODUCTION

Frequently in practice, a multi-sensor fusion system needs to be up-
graded by integrating additional sensors into the system to adapt to
more complex environments and tasks. Normally the structure and fu-
sion algorithm of the system should totally be redesigned for the up-
grade, even if most of the sensors in the system are retained without any
changes [2]. This inefficiency can be overcome if the fusion system has
incremental learning ability [11]. With this ability, the structure of the
fusion system is easy to be upgraded and only the added sensors need
to be trained before being included in the whole system.

Learning with spatially localized basis function [4], [16], [17] has
been studied for many years in contrast to the learning with the global
basis function [15]. A lot of applications have been accumulated such
as robot control [6], chemical process modeling [7], nonlinear system
estimation and control [8], image coding [18] and pattern recognition
[9], [12], etc. Incremental learning ability from local receptive-field
is proved to be extremely useful for approximating unknown func-
tional relationships between input and output data streams [11]. Among
these, Schaal and Atkeson proposed a Receptive Field Weighted Re-
gression (RFWR) algorithm in [1]. This algorithm is related to con-
structive learning [10] and local function approximation based on the
well-known radial basis function networks. But with some particular
nonparametric regression techniques involved, RFWR is more efficient
for incremental function approximation in the sense that it is not nec-
essary to store the training data and discard receptive fields after using
them. In addition, it can overcome some difficulties occurring normally
in the incremental learning tasks, especially the bias-variance dilemma
[13] and the negative interference problems.

However, direct application of RFWR in the multi-sensor data
fusion system is not practical. Although some techniques from non-
parametric statistics, such as leave-one-out local cross validation and
the stochastic approximation, improve the effectiveness of learning
in RFWR, they contribute much to the computational complexity of
whole learning process. Moreover, RFWR is a receptive field based
learning system. Learning in RFWR emphasizes only on adjustment
in individual receptive field. Thus a multi-sensor data fusion system
with this learning scheme may unexpectedly have inconsistent
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